N93-22601

A NASA-WIDE

HIGH-QUALITY SOFTWARE THROUGH REUSE

APPROACH TOWARD COST-EFFECTIVE,
{NASA)

(NASA-CP-10115)

-

S m e
; /veee/
=i

NASA Conference Publication 10115

A NASA-Wide Approach
Toward Cost-Effective,
High-Quality Software
Through Reuse

Edited by

Charlotte O. Scheper

Research Triangle Institute

Research Triangle Park, North Carolina

Kathryn A. Smith
Langley Research Center
Hampton, Virginia

unclas
0146667

G3/61

Proceedings of the Second NASA
Workshop on Software Reuse held at
Research Triangle Institute

Research Triangle Park, North Carolina
May 5-6, 1992

JANUARY 1993

NASA

National Aeronautics and
Space Administration

125 p

Langley Research Center
Hampton, Virginia 23681-0001

Contents

1 Introduction 1
1.1 Missionand Goals 2

1.2 Customers and Sponsorso 3

2 Technical Rationale 5
21 Benefits v e e e e 5

v 9 Problems and Barrierso L 5
9.3 Technical Approach o . 7
931 PrOCESS .« o o v v v e e e e e 7

2.3.1.1 Business Process 9

2.3.1.1.1 Business Analysis 9

2.3.1.1.2 Incentives for Reuse 9

2.3.1.1.3 Management Policy 9

2.3.1.2 Engineering Process 10

2.3.1.2.1 Domain Engineering 10

2.3.1.2.2 System Engineering 11

2.3.1.2.3 Software Engineering 11

2313 Legallssues oo 11

2.3.1.3.1 Acquisition Policy 11

2.3.1.3.2 Capitalization Policy L. 12

p. 1

23133 Lability . o000 12

2.3.2 Technology 12
2.3.2.1 Engineering Methods 12

2.3.2.1.1 Object-Oriented Methods 13

2.3.2.1.2 Generic Assets 13

2.3.2.1.3 Megaprogramming . . I AR ¢

2.3.2.2 Libraries. 14

2.3.2.2.1 User Interfaces 15

2.3.2.2.2 Asset Classification 15

2.3.2.2.3 Asset Management | : .7 16

2.3.2.24 Library Interoperability 16

2.3.23 Measurement L 16

2.3.2.3.1 Certification Metrics 16

2.3.2.3.2 Experience Metrics 17

233 Assets L e 17
2.3.3.1 Life-cycle Products 17

2.3.3.2 Captured Knowledge 18

2.4 State-of-the-Art L 19
2.4.1 Current Statﬁs of NASA Efforts 19
2.4.2 Assessment of State-of-the-Art 24

3 Proposed Actions 37

References
Appendix A: Workshop Participants

Appendix B: Viewgraphs Presented at Workshop

38

39

42

p. iii

List of Figures

91 Current Status of NASA Efforts
2.1 Current Status of NASA Efforts (Continued)

21 Current Status of NASA Efforts (Continued)

25

. 1v

List of Tables

1.1 NASA Headquarters Customers (') and Sponsors (S) in Software Reuse
EOMtS . . . o o e e e e e e e

2.1 The Software Reuse Problem Space

29 Technical Contacts for NASA Reuse Tools

J7rm AT

1. Introduction

NASA Langley Research Center (NASA Langley) sponsored a workshop on Soft-
ware Reuse Tools on May 5-6, 1992, at the Research Triangle Institute (RTI) in
Research Triangle Park, North Carolina. The workshop was hosted by RTI and
led by Kathryn Smith of NASA Langley. Participation was by invitation only and
included representatives from four NASA centers (Langley, the Jet Propulsion Lab-
oratory, Goddard, and Johnson), COSMIC, the Air Force’s Rome Laboratory, and
DARPA’s STARS/ASSET program. A complete list of the participants is included
in Appendix A of this report.

The primary purpose of this workshop was to exchange information on software reuse
tool development, particularly with respect to tool needs, requirements, and effec-
tiveness. The objectives of this information exchange were to 1) identify critical
issues and needs in software reuse and 2) identify opportunities for cooperative and
collaborative research by addressing the following questions:

o How is software reuse defined?

What are NASA’s requirements?

o What will be the benefits?

What needs to be done?

e How can results be quantified?

The participants in the workshop presented the software reuse activities and tools
being developed and used by their individual centers and programs. These programs
address a range of reuse issues: the creation, management, and use of repositories
(or libraries); library interoperability; domain analysis; and component certification.
Viewgraphs from the presentations are included in Appendix B of this document.

The participants of this workshop agreed that NASA is faced with increased con-
struction and use of software at a time when software development costs are rising
and budgetary resources are shrinking. This increased need is due in part to the
exponential growth in the amount of data resulting from NASA missions that must
be processed and analyzed as well as to the growth in software needs to conduct, con-
trol, and manage the missions themselves. Producing software becomes more difficult
and more costly as software becomes more complex, documentation becomes more

intricate, and technology undergoes rapid change. The participants concluded that a
concerted effort to promote and enable software reuse is required to accomplish cost-
effective software development under these conditions. This report summarizes the
workshop findings and presents the group’s plan for defining the goals and objectives
for NASA-wide coordination of software reuse activities.

1.1. Mission and Goals

The mission of the group’s proposed software reuse activities is to facilitate the con-
struction and use of high-quality, cost-effective software. It proposes to accomplish
this mision by creating a quality-conscious reuse environment at NASA that builds
on the agency’s past achievements in software development to accomplish today’s

missions.

Reuse is a process by which components created by activitiesin one software develop-
ment effort are used again, with or without modification, in other software develop-
ment efforts. Components include artifacts from all aspects of software development.
These artifacts can be requirements, specifications, designs, code modules varying
from low-level subroutine modules to stand-alone modules to complete subsystems,
interface requirements, revision histories, component- and system-level test cases, his-
torical performance metrics of usage and failure rates, development standards, and
risk information. Activities include the complete range of development and mainte-
nance activities, such as requirements analysis, design, implementation, testing, field
operations, and maintenance modifications. Process includes both the creation of
components that are capable of being reused as well as the actual reuse of compo-
nents. It encompasses identification, construction, verification, storage, retrieval, and
modification of components.

The group has four specific goals for its reuse activities:

|. Enable NASA missions in the era of very limited resources. This goal
specifically addresses supporting the smaller, low-cost missions. The proposed
reuse effort will accomplish this goal by putting into place a mechanism to build
software better, faster, and cheaper than can currently be done.

o

Promote and improve quality in NASA software products and pro-
cesses. Two aspects to accomplishing this goal are the application of TQM
principles to foster a quality-conscious environment, and the development and

use of the processes and metrics necessary to achieve a higher SEI (Software
Engineering Institute) software capability rating.

3. Preserve, package, and exploit NASA’s software legacy. This goal will
be accomplished by establishing a reuse environment that allows components
from existing systems to be reused, that applies lessons learned from one system
development to another, and that promotes interoperability among new and
existing systems.

1. Foster a pervasive culture of software reuse within NASA. Such a cul-
ture is an integral part of creating a successful reuse environment. This goal
can be accomplished through education and coordination. In the area of educa-
tion, this proposed effort will seek to improve awareness of software reuse and
to educate current and future engineers and managers. In the area of coordina-
tion, it will work to increase collaboration across NASA and to formalize and
incorporate reuse into the NASA software life-cycle process.

1.2. Customers and Sponsors

Table 1.1 identifies Nasa Headquarters customers and sponsors having an existing or
potential interest in software reuse eflorts.

Table 1.1. NASA Headquarters ('ustomers ((') and Sponsors (5) in Software
Reuse Efforts

HQ Code

RC
RJ
RS
SMI
SZE
SE
SS
SL
SB
SN
CU
QE
QR

) Lee Holcomb

) Kristin Hessenius

) Sam Vernneri

'/S) Joseph Bredenkamp
)

S
S
S
C
C) Guenter Reigler

1
7

(
(
(
(
(

(S) Frank Penaranda
(S/C') Don Sova
(S/C) Alice Robinson

Areas

HPCC, CAS, ESS
Aero R&T

Space R&T

Data Management
Astrophysics

EOS

Space Physics
Planetary

Life Sciences
Microgravity
Technology Transfer
Technical Standards

2. Technical Rationale

2.1. Benefits

Results from a market analysis conducted for the ASSET repository were discussed
at the workshop. This analysis determined that the perceived benefits of reuse are,
in order of priority, improved cost/productivity, reduced development time, increased
quality, and increased competitiveness. The surveyed users thought that the reuse
approach would provide an improved development environment where prototyping,
development, modification, and porting could be accomplished efficiently and more
successfully. They also felt that it would provide better communication among the
stafl involved in the development. These improvements would lead to the projected
cost/productivity and development time gains. The users felt that the quality and
reliability of the software would be improved, without increasing development costs,
due to the increased testing and easier maintenance that reuse would provide. Finally,
they felt that the ability to produce higher quality software at less cost would let them
bring a better product to the market faster than their competitors.

The findings of this market analysis agree with the general consensus that cost savings
can be realized through increased software reuse. These cost savings result not only
from the reuse of code, but also from the retention of software engineering knowledge
and experience in a database that others can access. This allows improvement of the
development process by building on past experience and lessons learned. In fact, it
is now thought that the greatest benefits will probably be realized by reusing more
abstract artifacts of software development than code modules, including artifacts from
the process, design, and model levels [1].

2.2. Problems and Barriers

Before software reuse can be a practical reality, several issues relating to quality, cost,
and usability must be resolved [2,3,4]. The goal of reusable software is to cut costs,
but, depending on the application and system, this may not always be the case 5]
Practically, component retrieval costs should be less than component development
costs. A previous NASA workshop [6] concluded that there was a need for economic
models of reuse that could quantify the cost tradeoffs, identify the cost factors, and
allow the calculation of how many times a component must be reused to justify the

cost of creating and reusing it.

The ASSET market analysis concluded that barriers to software reuse exist in the
lack of mature processes, standards, and tools for reuse; company cultures and atti-
tudes based on current software development processes; the front-end investment cost
of designing reusable software; unresolved legal issues such as intellectual property
rights, licensing and contractual issues, and product liability; and a lack of component

suppliers, maintenance and support, and concern.

The following additional items were identified as potential barriers to reuse by the

participants of this workshop:

The need for systems with unprecedented requirements
e Limited information access mechanisms

The perception that building new software is faster than searching, identifying,
retrieving, understanding, and modifying existing software objects

A lack of methods/procedures for reuse

No common environment for reuse
e A lack of management support
o A lack of successful case studies

e Inertia

2.3. Technical Approach

The proposed effort to promote and enable software reuse throughout NASA requires
a coordinated attack on a broad set of entrenched, interrelated problems. The problem
space is described in Table 2.1.

Within cach of these problem areas, progress can be made by pursuing all or some of
the following seven activities:

I. Define solution approach
2. Evaluate feasibility
3. Build prototype/product

4. Agree upon broad standards

b |

. Train
6. Distnibute

(lommercialize - enlist industry support

.\l

A matrix in which the problem areas are listed down the side, and the solution activ-
ities along the top, provides a framework for assessing progress towards widespread
software reuse. In the following subsections, each problem area is briefly described.
In the next section, the state-of-the-art at NASA is examined by filling in the matrix
with activities currently being pursued by NASA centers.

2.3.1. Process

Achieving widespread software reuse is not simply a technological problem, nor is it
simply a matter of creating and collecting a large number of reusable assets. A reuse-
based approach to software engineering requires a change in the processes followed by
all parties involved. This includes not only engineering processes, but also investment,
acquisition, and management processes. Each of these areas presents obstacles to
reuse which must be overcome. By addressing them in terms of the roles involved,
the authority and interrelationships of these roles, and the procedures they would
follow in a reuse-based development context, an Operations Concept of reuse can

I

Table 2.1. The Software Reuse Problem Space

l. Process 7

1.1 Business Process

1.1.1 Market Analysis
1.1.2 Incentives for Reuse
1.1.3 Management Policy
1.2 Engineering Process
1.2.1 Domain Engineering
1.2.2 System Engineering
1.2.3 Software Engineering
1.3 Legal Issues

1.3.1 Acquisition Policy
1.3.2 Capitalization Policy
1.3.3 Liability

2. Technology

2.1 Engineering Methods
2.1.1 Object-Oriented Methods
2.1.2 Generic Assets

2.1.3 Megaprogramming
2.2 Libraries

2.2.1 User Interfaces

2.2.2 Asset Classification
2.2.3 Asset Management
2.2.4 Library Interoperability
2.3 Measurement

2.3.1 Certification Metrics
2.3.2 Experience Metrics
3. Assets

3.1 Life-cycle Products

3.1.1 Requirements

3.1.2 Designs

3.1.3 Code

3.1.4 Test Procedures
3.14 User Guides

3.1.4 Other Life-cycle Products
3.2 Captured Knowledge
3.2.1 Reuse Guidance
3.2.2 Reuse Experience
3.2.3 Process Models

Tih §

be developed that can serve as a statement of vision against which progress can be
measured.

2.3.1.1. Business Process

This category refers to the set of problems concerning the financing, acquisition, and
management of reusable software and of software developed by means of large-scale
reuse. It includes such issues as rights retained on reusable assets, royalty structures
for the use of such assets, and liability for defects in the assets.

2.3.1.1.1. Business Analysis

The economics of reuse are not straightforward. Models of the return on investment
have been developed which show the extent of reuse necessary to justify an initial
investment in developing reusable software. Market analysis is necessary in order to
estimate whether the projected reuse is a reasonable expectation in a given domain.

2.3.1.1.2. Incentives for Reuse

Current Government acquisition policies, as stated in the Federal Acquisition Reg-
ulations (FAR), tend to discourage reuse. For example, if a company cannot retain
the rights to reusable software incorporated in a Government system, then there is
no incentive for the company to invest the extra resources that reusable software re-
quires. Similarly, development of reusable software under a Government program is
implicitly discouraged, since such development requires additional resources and can
drive up the cost of a single system.

2.3.1.1.3. Management Policy

Reuse-based software development requires a shift of management priorities away
from “whatever it takes to make this project succeed” to a longer-term vision encom-
passing many projects. A domain orientation, which sees the development of a single
system as one instance in the development of many similar systems, is thus required
not just by engineers but also by management.

il

2.3.1.2. Engineering Process

This category refers to the technical procedures followed by software engineers through-
out the development life cycle. Experience has shown that large scale reuse is not
achieved by simply making libraries of reusable components available to developers,
with no corresponding changes in the processes the developers follow. The “not in-
vented here” (NIH) syndrome and various other obstacles to reuse necessitate a new
understanding of what it means to develop software. This new understanding is en-
capsulated in the term Domain Engineering, which must now be added to the familiar
concepts of system and software engineering.

2.3.1.2.1. Domain Engineering

A domain is a family of similar systems. It corresponds to a familiar application area
or technical area, such as avionics systems, satellite systems, accounting systems,
database systems, communications systems, etc. Domains can contain subdomains,
which represent standard parts of a complex system (for example, the ground segment
of a satellite system).

Domain engineering is a discipline that stemns from the fact that, within a given
domain, the same techniques, design alternatives, tradeoffs, rules of thumb, testing
approaches — and other aspects of the engineering process — are frequently encoun-
tered again and again. Whether there is a formal “software reuse” program in place
or not, the most effective engineers informally reuse the knowledge and techniques
that they have built up through experience. Domain engineering seeks to systematize
this process and make the legacy of built-up knowledge available to all members of a
development team.

Domain engineering is an approach to developing systems by exploiting similarities
within a given domain. Individual systems in a domain are developed by instan-
tiating a generic architecture, which describes the common structure of systems in
the domain. A good generic architecture also identifies the ways in which individual
systems can vary; ideally, it provides an easily used mechanism, such as parameter
instantiation, for describing the unique aspects of a new system. Through the use of
the generic architecture and its instantiation mechanism, the development of strictly
new software is kept to a minimum.

Domain engineering is intrinsically evolutionary: each new application yields expe-
rience that is fed back into the domain model (which consists of the generic archi-

tecture as well as the techniques and supporting knowledge necessary for using the
architecture). This feedback means that the domain model — which is a model of
recommended engineering practice within the domain — continually changes as re-
quirements become more and more complex, and as improved solution techniques are
discovered.

2.3.1.2.2. System Engineering

Decisions made during the system design process (for example, partitioning decisions
and processor allocation decisions) can impact the feasibility of reuse during soft-
ware development. Thus, the concepts of reuse and domain engineering need to be
integrated into the systems engineering process as well.

2.3.1.2.3. Software Engineering

Developers must be trained to view reuse not just as an ad hoc labor-saving technique,
but as part of an overall engineering discipline that minimizes risk by building on past
experience. Reuse must not be relegated to the coding phase of a project. It is equally
(perhaps more) important in the earlier life-cycle phases, i.e., requirements analysis
and design, and can be effectively applied in other activities such as test planning
and test development as well.

2.3.1.3. Legal Issues

This category refers to a range of problems that arise when reuse is attempted be-
tween organizations (e.g., Government and industry). Changes are required in the
Government’s acquisition policies as well as in the laws governing rights to software
in the commercial arena.

2.3.1.3.1. Acquisition Policy

As already mentioned, the FAR tends to discourage reuse on the part of Government
contractors. Provisions need to be made for the retention of rights to reusable software
incorporated in a Government system. In addition, the way in which software is

maintained may need to change, as source code for proprietary components may not
be made available to a maintenance contractor.

2.3.1.3.2. Capitalization Policy

Investment in the development of reusable assets would by encouraged by a modified
accounting system, in which newly written software could be amortized over a longer
period of time than its development period. This would to some extent mitigate the
additional expense of developing software to be reusable.

2.3.1.3.3. Liability

As software assets come to be treated more as commercial products, the question
of liability for errors arises. The question is intrinsically complex because the con-
text in which an asset is intended to be reused is typically not completely defined
(formal specification is not yet widespread in the software industry). Certification is
an approximate process. The question becomes even more complex when there are
multiple layers of reuse, e.g., component A from organization A is reused in tool B
from organization B, which is reused in system C for organization C.

2.3.2. Technology

The technological problems have been addressed more extensively, to date, than the
process issues. A great deal of progress has been made in our understanding of
how to develop assets that are reusable, and how to organize and present these for
easy location and access by developers. Less progress has been made in the area
of measurement, i.e., how do we assess the success of a reuse program? Neverthe-
less, significant technical problems remain in all three areas of engineering methods,
libraries, and measurement.

2.3.2.1. Engineering Methods

C'reating reusable assets is a technical challenge because software requirements con-
tinually evolve. Designing for reuse requires the ability to predict how requirements

will change over time, and in what different contexts an asset will have to be reused.
The basic software engineering goals of modularity and encapsulation improve the
chances of reuse but do not by themselves solve the problem. In fact, none of the
methods discussed below solves the problem, but they represent significant progress
in our understanding of what makes software reusable.

2.3.2.1.1. Object-Oriented Methods

Data encapsulation and information hiding are basic techniques that aid in the defini-
tion of components that are loosely coupled to their environment (and can therefore
be reused in other environments). Decomposing software in terms of “objects,” which
represent the entities or important “things” in a given domain, has turned out to be
a systematic way of achieving data encapsulation and information hiding. This is
known as object-based software development. Object-oriented development goes one
step further by organizing objects into classes and subclasses. Members of a subclass
inherit attributes and capabilities from the parent classes. Inheritance has been ad-
vocated as a means of achieving reuse: by having an object inherit functions from
a parent class, a developer does not have to re-implement them in the subclasses.
However, systematic use of inheritance has also led to difficulties in reuse and main-
tenance, which have been documented in the object-oriented programming literature
(e.g., the proceedings of the Object Oriented Programming, Languages, Systems, and
Applications — OOPSLA — Conferences). The difficulties stem primarily from the
dependencies of a subclass on its parent classes. These dependencies work against
the encapsulation (localization) of information that are a hallmark of good software
engineering.

Organizing objects into classes and subclasses can be a useful tool in understanding
a problem domain during the analysis and design phases, even if inheritance is not
implemented in the programming language used. Overall, there is a consensus in the
software engineering community that object-orientation supports the development of
reusable software. Unfortunately, there has been very little empirical measurement
performed to test this belief.

2.3.2.1.2. Generic Assets

Languages such as Ada (and now C++) allow for the definition of components that
are generic, in that they are parameterized to allow their use in different contexts.

For example, a generic list package may be used to manage lists of different types of
objects: the generic package is instantiated according to the particular object type
to be supported in a given application.

Recently, the notion of a generic asset has been extended to encompass more than
code components. Software engineers now speak of generic architectures for certain
types of systems (this is the thrust of a major DARPA program - Domain Specific
Software Architectures). In the context of domain engineering (see Section 2.3.1.2.1),
we can even speak of generic requirements specifications.

('lass hierarchies and generic assets are two methods of building in variability, so as
to increase the chances of an asset being reused. In a class hierarchy, variation 1s
accommodated by the range of subclasses of a given parent class (e.g., the varieties
of a window in a windowing system). In a generic asset, variability is accommodated
by means of parameters that must be instantiated in order to use the asset.

2.3.2.1.3. Megaprogramming

Megaprogramming refers to the idea of building software systems out of large building
blocks, each of which represents a rich capability in its own right. The consensus in
the software engineering community seems to be that this can be achieved in domain-
specific contexts, where the typical architecture and building blocks of a system are
well understood. Megaprogramming s, for this reason, very closely related to domain
engineering.

In domains where there is a great deal of commonality from one system to another,
the synthesis of the building blocks into new systems can often be described in terms
of a very high-level language (VHLL); for example, architecture diagrams that re-
fer to well-known subsystem implementations. Automated code generation plays an
increasingly important and feasible role in this context to create the code that ties
together the specified building blocks.

2.3.2.2. Libraries

Most of the research and development in software reuse has concentrated on the
development of library systems. There are numerous issues remaining to be resolved
concerning the best way to present information to the user, the most effective ways
of organizing a library to facilitate finding desired assets, and the ability of multiple

libraries to interoperate in a seamless fashion despite differences in their internal
storage procedures and user interfaces.

2.3.2.2.1. User Interfaces

The overall problem here is to prevent a user from being overwhelmed by massive
 amounts of information while providing access to the assets that will meet his/her
current requirements. The advent of graphics/windowing systems and of hyper-
text/hypermedia systems has opened many new possibilities for presenting informa-
tion to the user. In addition to query-driven database searches, some systems now use
hypertext techniques that allow users to browse or navigate through the contents of
a library, following reference or similarity links from one asset to another. Graphical
interfaces can show “neighborhoods” of closely related assets, allowing the user to
grasp the overall content of the library in a visual manner. .

2.3.2.2.2. Asset Classification

This problem bears directly on the ease with which users can locate assets meeting
their requirements. Assets may be classified hierarchically, as in a tree structure, or by
means of facets, which are independent attributes of an asset (e.g., function, author,
programming language, etc.). Both overall methods present problems. Hierarchical
schemes have been used in object-oriented programming systems such as Smalltalk,
and have frequently proven difficult to use when the conceptual scheme assumed by
the creator of the library is markedly different from that of the user. Faceted systems
are frequently limited to describing superficial characteristics of an asset; for example,
the function of a component may be described in a manner that leaves may questions
about the operation of the component unanswered.

In addition to problems with both methods of classification, determining the specific
classification of an asset is inherently problematic. The name that one person uses to
describe a function may be different from the name used by someone else. Support
for synonyms and similarity is therefore desirable.

2.3.2.2.3. Asset Management

Software evolves, and not all reuse will be verbatim reuse. There will be circumstances
in which modified assets are submitted to a library for inclusion as a variant to the
original on which it is based. In addition, if problems with reuse are reported, it
may be necessary to maintain software stored in a reuse library. These and other
circumstances create a problem of managing the assets in a library. Procedures and
supporting technology are needed for configuration control, access control, and similar
asset management tasks.

2.3.2.2.4. Library Interoperability

Widespread sharing of information among software engineers will require the ability
of libraries to interoperate, so that requests at one library system can be satisfied by
retrieving assets from another, perhaps geographically remote, system. The Reuse
Library Interoperability Group (RIG) is currently addressing this problem.

2.3.2.3. Measurement

This area has received the least attention of all the technological aspects of reuse,
and yet it is crucial to achieving any kind of objective success.

2.3.2.3.1. Certification Metrics

Various schemes have been proposed for annotating reusable assets with a certifica-
tion measure — a description of the confidence the library management has in the
correctness and quality of the asset. Because quality is not a precisely defined con-
cept in software (it has different meanings on different projects), and because in the
absence of formal specifications even correctness is not precisely defined, certification
must be viewed as an approximate indicator rather than an absolute seal of approval.
Methods for certifying reusable assets will evolve as testing theory, use of formal
methods, and approaches to quality assurance evolve.

p. 16

2.3.2.3.2. Experience Metrics

This category refers to the collection of measurements concerning the practice of reuse.
These measurements may include how much software from a library is being reused,
what percentage of new systems consists of reused code, how many successful vs.
unsuccessful searches there have been in a library system over a given period of time,
how many errors have been encountered in reused assets, how many modifications
have been necessary in reusing an asset, what kinds and frequencies of problems have
been encountered in reusing various assets, etc.

Information gathered from such measurements can be used to refine the organization
of a library, improve the procedures for using the library, improve other aspects of
the software development process, filter out unneeded or substandard assets from
a library, and in many other ways contribute to an ongoing process improvement
program.

2.3.3. Assets

The development of a sizable store of reusable assets is, obviously, key to a successful
reuse program. There are two main points to be made: 1) we should be thinking of
reusing life-cycle products in general, not just code, and 2) we can (and must) reuse
knowledge that has accrued over the years of developing systems in a domain.

2.3.3.1. Life-cycle Products

Many products created over the course of the software development life-cycle can
be reused effectively in future systems. Many researchers in the field have come to
the conclusion that reusing code without reusing requirements, specifications, and
designs will never lead to more than ad hoc reuse. It is the requirements and design
that establish the context for code components — for example, the interfaces —
a context that is either consistent or inconsistent with the assumptions of existing
code components. Thus, it is in the requirements analysis and design phases that
key decisions affecting the potential for reuse are made. To the extent that these
decisions are consistent with those made in the past (i.e., requirements and designs
are reused), the chances of successfully reusing code are increased.

[n addition, there are the obvious economic benefits to be gained if a design specifi-

p. 17

cation, for example, can be created by means of a few modifications to an existing
document. This is also a means of reducing risk on a project, since the number of
decisions without precedent is reduced.

2.3.3.2. Captured Knowledge

It is sound engineering discipline to build on knowledge accumulated through prior
efforts, but relatively little attention has been paid to integrating this process into a
reuse framework. The advantage of doing so is that knowledge can be shared rather
than remaining in the mind of a single developer. A reuse program should therefore
Jlook at ways of packaging previously accrued eng{heering knowledge so as to make it
available to the developers of new systems.

The 1990 report of the Computer Sciences and Technology Board (CSTB) of the
National Research Council strongly recommended the use of handbooks in specific
disciplines as a means of packaging and transferring this kind of knowledge (Commu-
nications of the ACM, March 1990). Such “handbooks” could in fact be on-line and
made available as part of a reuse environment, providing guidance on how to reuse
various assets, information about past experience in reusing specific assets (lessons
learned), and criteria for choosing reusable assets.

In addition, alternative process models, suitable for projects with different character-
istics (e.g., size, criticality, performance requirements, etc.), could be stored and made
available as part of this on-line database of knowledge. This knowledge would con-
stantly evolve as a function of the experience metrics collected (see Section 2.3.2.3.2).
In the long run, the reuse of packaged knowledge of this sort can have a great impact
on software quality and productivity because they directly address the risk factors
associated with software development.

2.4. State-of-the-Art

2.4.1. Current Status of NASA Efforts

The workshop identified current reuse activities at four NASA centers: Langley Re-
search Center, the Jet Propulsion Laboratory, Goddard Space Flight Center, and
Johnson Space Center. The tools resulting {rom these activities are described in the
following sections, and the technical points of contact are summarized in Table 2.2.

Table 2.2. Technical Contacts for NASA Reuse Tools

Technical Contact | NASA Center Tools/Programs
Kathryn Smith LaRC Eli (InQuisiX)
Randy VanValkenburg | LaRC SEAL
Ed Ng JPL HyLite
Walt Truszkowski GSFC LEARN-92, KBSEE
Mike Bracken GSFC KAPTUR
Charles Pitman JSC RBSE, REAP, SimTool, PCS/ESL

NASA Langley Research Center

The Eli Software Synthesis System is an automated set of cooperating reuse tools
that NASA Langley has been sponsoring. It is in its third phase of development, dur-
ing which it is being commercialized as InQuisiX. The component tools are library
facilities to classify, store, and retrieve reusable components; design synthesis; com-
ponent checkout; file checkout; and Ada component metrics. Eli has been designed to
be tailorable to specific users needs. It supports user-defined component classes and
classifications and many types of attributes. The goal of this system is to automate
the development and use of reusable components to make software reuse easier to
accomplish.

Eli is an operational product, running under X11 on a Sun4. It has a window and

menu-based user interface. It manages code, design, test case, and documentation
components and performs the complete set of library functions. Additionally, it pro-
vides facilities for integrating library components into new systems under develop-
ment.

The Software Engineering and Ada Laboratory (SEAL) at NASA Langley is involved
2 number of efforts that will facilitate the implementation of reuse in the software
development process. A domain analysis is underway that will identify the poten-
tial for reuse for the domain of interest to the SEAL. The SEAL is cooperating
with the hardware and systems engineering branches at Langley to document a sys-
tems engineering approach that includes participation of software engineers from the
earliest stage of development and that will advocate the development of standards
for hardware, limiting the options software has to address. An object-based design
methodology has been defined in the SEAL and many of the code modules actually
developed are in the form of reusable, generic Ada packages. Finally, the SEAL is
developing guidebooks for developing reusable Ada components/systems and for a
tailorable software engineering process.

The Jet Propulsion Laboratory

HyLite is an R&D activity of JPL that is producing a tool to facilitate the con-
struction of electronic libraries for software components, hardware parts or designs,
scientific databases, bibliographies, etc. HyLite evolved from a task formerly entitled
the Encyclopedia of Software Components (ESC) and its major area of applicability
has thus far been software resue. HyLite has a graphical user interface (GUI) to its set
of library functions. These functions include inserting new components and property
knowledge, browsing and searching databases, and retrieving software from selected
networks. It also contains a library of math software and a library of data structures
and algorithms.

HyLite has employed advanced technology in developing its component functions.
These technologies include object-oriented databases, semantic networks for classi-
fication, and automatic GUI generation. The effort is currently addressing the use
of Al technologies for intelligent retrieval based on learning from experience, user
models, the correction and/or completion of retrieval statements, and suggestions for
alternative retrievals.

A prototype for beta testing exists for the color Macintosh. The prototype uses
SuperCard, Macintosh Allegro Common Lisp, Pixel/Paint Professional, Canvas 2.0,
and Think C to implement the system’s functions. This prototype is currently being
ported to UNIX workstations running under XWindows and will be upgraded to

p. 20

include the Al technologies, a history mechanism, and more complete Hypertext
capabilities. Additional efforts are underway to adapt HyLite as a graphical front-
end for a national software exchange experiment, to adapt it as an intelligent front-end
to NAIF (a library of software tools and datasets for space flight navigation systems),
and to connect to NetLib. Initial preparations are being made for commercialization.

Goddard Space Flight Center

LEARN-92 (Learning Enhanced Automation of Reuse Engineering) is an experimen-
tal project that is using conceptual clustering techniques from artificial intelligence
to automatically develop a classification scheme for code components. This capabil-
ity would support the domain engineer, who must create a classification scheme for
components as part of the domain model. A prototype version of the tool is planned
to be completed by the end of September 1992.

LEARN-92 is intended to provide the software engineer with a classification of compo-
nents based on their role in the problem space (i.e., what problem they solve), rather
than the solution space (how they are implemented.) The inheritance hierarchy of an
object-oriented programming system, such as C++, provides a solution-space organi-
zation; this is often not very helpful to programmers who are searching for a reusable
component to perform a specific function.

LEARN-92 will provide an automated mechanism for hierarchical classification of
code components, based on faceted descriptions of these components. A unique aspect
of the faceted descriptions is that the facet space is extendible “on the fly” by the
user who is placing a component into the system. The user is encouraged, but not
required, to use existing facets in describing a new component. The focus in this
effort is on code components, but the classification mechanisms being implemented
in LEARN-92 could work for other forms of assets as well.

KAPTUR (Knowledge Acquisition for Preservation of Trade-offs and Underlying
Rationales) is a tool under development for preserving and building on NASA’s en-
gineering legacy. It captures the engineering decisions/rationales that went into the
development of software assets and provides an easy-to-use environment for accessing
that knowledge. The functionality implemented by KAPTUR includes entering new
architectures, recording rationales, placing rationales within the context of an over-
all domain model, browsing alternatives, understanding decisions, and selecting for
reuse.

KAPTUR supports an approach to domain engineering in which assets are organized
in terms of their distinctive features, which represent key engineering decisions, and

which are justified by rationales. The approach is also distinguished by the fact
that it is case-based, i.e., actual legacy products are included in the database, not
just generic models for future use. KAPTUR's approach to asset classification uses
a typing structure including both domain-independent and domain-dependent asset
types. Within a type, assets are classified on the basis of their features. The KAPTUR
concept of feature is broader than that found in the Software Engineering Institute’s
Feature-Oriented Domain Analysis (FODA) method. KAPTUR employs a novel user
interface approach which is based more on direct display and manipulation of the
database rather than queries. A hierarchical map of alternatives and a stack of pages
describing them are presented to the user in a window and menu-based format.

KAPTUR currently runs on a Sun SPARCS Station. Version 2.0 has been released,
following versions 1.0 and two earlier prototypes. The system is currently being
distributed to interested/potential users, and a training course on KAPTUR and
Domain Analysis is being developed. The developers of KAPTUR maintain that the
continuous feedback loop this type of system provides between the supplier of reusable
components and the user of those components is the key to successful reuse.

The KBSEE (Knowledge-Based Software Engineering Environment) is a prototype en-
vironment to support the production of new systems by configuring generic assets
stored in a domain model. It incorporates the Evolutionary Domain Life-Cycle
(FDL(') model in which new systems are used to update the domain model to make
it more responsive to future requirements.

The KBSEE makes reuse the central activity of the software engineering process. De-
velopment is seen as a process of identifying the required features of a new system,
retrieving the assets possessing those features from the generic domain model, check-
ing the mutual consistency of the assets, and configuring them into the new system.
Specification of the required features is done by the developer; all the other steps are
performed by the KBSEE.

The domain model, as stored by the KBSEE, consists of a hierarchy of generic assets,
each of which possesses certain features that make it suitable or unsuitable for a
given application. The generic assets are created through the process of Domain
Analysis, which abstracts the functionality found in existing and planned systems in
the domain.

Assets are organized into whole-part and class-subclass hierarchies. In addition, assets
possess features (similar to the notion of feature in the Software Engineering Insti-
tute's FODA method), which are used to determine which assets should be retrieved
to meet the requirements of a new system. Features are described as mandatory (must

i

be present in any system), variant (one of several variants must be present in any
system), or optional (may or may not be present).

A prototype KBSEE has been developed, and its feasibility is now being tested in the
Payload Operations Control Center domain. The KBSEE effort has focused to date
on the storage of generic requirements specifications and the automated configuration
of requirements specifications for new systems based on the generic versions. This
supports a development process that consists of configuring assets each of which can
represent a complex capability in its own right. This highly automated concept of
software development supported by the KBSEE makes it suitable for megaprogram-
ming.

Johnson Space Center

The NASA Repository - Based Software Engineering Program (RBSE) directed by

NASA Johnson Space Center has operated a prototype public-domain software reuse
library (AdaNET) since 1989. Updates to the AdaNET architecture, including high-
performance hardware and an open-systems-based library management system are
reversing a trend to degraded responsiveness and capability. The RBSE is commit-
ted to making reuse part of the mainstream of software development practices and
is working to achieve this by delivering and supporting a robust set of products sup-
porting research to fill critical technology gaps, and adapting to changing customer
requirements. Through the Reuse Interoperability Group, RBSE is involved in de-
veloping standards for interoperability among government-funded reuse libraries, and
sees interoperability as key to expanding the base of library suppliers and customers.

In addition to RBSE, NASA’s Johnson Space Center supports several activities that
are related to software reuse. The Re-Engineering Application/Project (REAP) is
developing an integrated reengineering environment, including methods and tools. It
captures all code and as much as possible of other software life cycle products in
an electronic repository and provides analysis support for abstracting, grouping, and
structuring the information.

SimTool is also supporting the domain engineering process through the construction
of simulations of new applications based on a library of models from the domain.
Using SimTool’s library of executive software components, application interfaces, and
math models, the user builds an application specification. This specification identifies
which components are to be integrated and how they relate to each other and the
simulation.

The Parts Composition System/Engineering Script Language (PCS/ESL) provides re-

usable, domain-specific software parts, catalogs of parts, and libraries. The software
parts consist of primitive modules and drivers/graphs. This tool lets the developer
retrieve parts from the library and recombine or modify them into new, executable
applications. The modules and applications are represented in the library as graphs.
The ESL is a graphical language for composing complete applications from software
parts, and as such is one approach to megaprogramming. A prototype of this system
has been built and is being tested.

2.4.2. Assessment of State-of-the-Art

A problem area/solution activities matrix based on the framework described in Sec-
tion 2.3 was created to determine and assess the current status of reuse activities
at the NASA centers. The participants at this workshop filled in_the matrix with
respect to the reuse activities and tools berinrgr pursued by their centers. These indi-
vidual results were then compiled into the matrix in Figure 2.1 using the following
key to identify the individual tools:

o X -

1 Eli (InQuisiX)
2 HyLite
3 SEAL
4 RBSE
51 LEARN-92 =
52 KAPTUR
53 KBSEE
6 RBSE, REAP, SimTool, PCS/ESL

Notes related to individual column entires are included after the table.

This matrix provides a snapshot of existing NASA reuse activities in a framework that
denotes their status with respect to the issues that this workshop identified as crucial
to the successful development of a NASA-wide reuse environment. This snapshot
clearly illustrates where NASA is now and provides a basis for determining where
future efforts should be directed in resolving these issues. -

SOy YSVN JO sniei§ juaiin)) "1°g aIndi g

)14
14 Aupqen £ 24
te
14 Aoyog uopezieyde) 22
12

v 4 Aoyod uosinboy =02 |

BT |
T
¥ '€ € € I1S'E €S°15 €S ‘1S Buneeuibul esemyos 7T
g}
v € € Bupeeuibug weisAs St
€S ¢S ES 25| 9 €GeS 128
v'c 2s IS 1S ISy Bupesuibu3 urewoq €t
|
|3
€ v Kolod weweBeueyy M
6
v esney JOj SeARUedU) 8
74
sisAfeuy 1eXpew 9
S
$56201d v
voddng | emquisig | uresy | sprepueis | wnpoid | Ampqisees | yoeosddy t
Ansnpu peog redAiolold | emnpeal vognjos F
s uodn eesby ping suyeq T

p!| r | H 9 4 3 a 0 ajv

Xid1V 30 NOILHOd SS300Hd

25

(panunuo))) sypoyd VSYN JO sn1elg j1uauny 'z a1n3tj

T4
14 v'E somnep eouepedxl | 74

124

somep uoneoyed k44

12

(iT4

14 v 9°e v v Ayiqesedoseiu; Aresqr 3]

gt

4 9'P2't rAN} 1 wewebBeuep 10ssY yas

TES oG 15| £G &5 15 EG 25 15 gl

v v'ee’t 2t v'E’l uogealissel) 1essy St

55 [44 vi

ve’t seoepell) Jesn el

5 F43

TT

v € 9°'eS ‘t €5 'E €5 BunuwesBosdefiepy ot
6

v'c € € €S'e ES €5 S16SSY JUeuUey 8

pA

€ v'e € € €2 9'c'e € spoyle peyueu-1elao 9

S

14

uoddng | ewnquasiq ues) splepuels onposd | Amqisee yoeoxddy £
Ansnpuy peo)g /edlyold | erenrea3 uopnos F

1siiul uodn eeBy pMmg euye(!

| r | H 9 4 3 a o) glyVv

XIHLVN 30 NOILLHOd ADOTONHO 3L

p. 26

(panurjuo)) syoyd YSYN Jo sniei§ jusny g sy

-
€ € € % 4 S)8PO SS6001d %4
[44
€ 2S'E 2s 2s eouepedx3y esney 12
0c
eouBpING esney Bl
8t
74
e £ €'l i 1 s1onpoid 8pkoe) RO 2]
S!
v'e € €2t A | ! S6pIND) 1S 128
[}
v'e € €2’ A} I $8.NpPeso.d ise | z1
15t 1S H
v'e € rA Y [S-2 § 8pod ot
2s 6
v'e € g2l r A\ 1 subiseq 8
£S5 ¢S €9 J4
¥ '€ € €2°L 2l €S°1 swewesinbey)
2 S
17
Joddng | enquisig | ureiy | sprepumis | wnpoid | Aunqrsesy | yoeoxddy *
Ansnpuj peasg redAoioid | ereniea3 uoanios 2
IsIu3 uodn eeJBy pang euyeQ T
A f | H 9 4 3 2

XIH1VN 40 NOILHOd S13SSV

p. 27

PROCESS NOTES

Tool 3: SEAL

Cells 6G,J ~ The domain analysis of 13G should answer the market analysis question:
does the potential for reuse in our domain justify the cost of reuse efforts? See

13J.

‘ell 101 - SEAL management is committed to the “domain orientation,” and we
are seeking to educate other areas of management via classes and informal

interactions.

Cells 13G,J - A “Domain Analysis” of the SEAL software application domain(s)
is being conducted to reveal the commonalities between development projects.
This is a deliverable under a task being conducted by the SEAL for the Code
QE Software Engineering Program.

Cells 15E,H — The SEAL is cooperating with LaRC hardware and systems engi-
neering branches to document a systems engineering approach that includes
participation of software engineers in the earliest stages. The SEAL advocates
limiting hardware choices, such as buses and microprocessors, to selections from
a small set of agreed upon standards. This will further promote reuse of software
components.

Cells 17G H,1,J - These are addressed in Asset cells 23G,H,1,J. The referenced guide-

books will also cover the management and assurance processes.

[ool 4; RBSE

Cell 8E - RBSE participates in the Reuse Acquisition Action Team, a group which
is focused on management/acquisition issues of reuse. It is sponsored by the
ACM/SIGAda Reuse Working Group. The group has strong support from
DoD’s Executive Reuse Steering Committee and acquisition/policy officers from
Army, Navy and Air Force.

Cell 10E - RAAT (See 8E)

Cell 13FE - RBSE is active in developing the Software Engineering Institute’s “Design

for Reuse Handbook.” RBSE sponsored a workshop earlier this year at the
University of Houston, Clear Lake.

Cells 13-24J) - AdaNET provides information about a range of reuse-related tech-

nical and non-technical issues. Information on these and other topics may be
available.

Cell 20E - RAAT (See 8E)

Tool 51: -

Cell 13 - LEARN-92 is an experimental project that is using conceptual clustering

techniques from artificial intelligence to automatically develop a classification
scheme for code components. This capability would support the domain en-
gineer, who must create a classification scheme for components as part of the
domain model. A prototype version of the tool is planned to be completed by
the end of September 1992.

Cell 17 - LEARN-92 is intended to provide the software engineer with a classifica-

00

tion of components based on their role in the problem space (i.e., what problem
they solve rather than the solution space (how they are implemented). The
inheritance hierarchy of an object-oriented programming system, such as C++,
provides a solution-space organization: this is often not very helpful to pro-
grammers who are searching for a reusable component to perform a specific
function.

Cell 13 - KAPTUR supports an approach to domain engineering in which assets

are organized in terms of their distinctive features, which represent key engi-
neering decisions and which are justified by rationales. The approach is also
distinguished by the fact that it is case-based, i.e., actual legacy products are
included in the database, not just generic models for future use.

KAPTUR 2.0 has been released, following version 1.0 and two earlier prototypes.
The system is currently being distributed to interested/potential users, and a
training course on KAPTUR and Domain Analysis is being developed.

Tool 53: KBSEE

ell 13 - The KBSEE is a prototype environment intended to support domain
engineering; in particular, the production of new systems by configuring generic
assets stored in a domain model. It is based on an evolutionary concept of
domain engineering, in which new systems are used to update the domain model
to make it more responsive to future requirements. A prototype KBSEE has
been developed, and its feasibility is now being tested in the Payload Operations
(‘ontrol Center domain.

Cell 17 — The KBSEE makes reuse the central activity of the software engineering
process. Development is seen as a process of identifying the required features of
a new system, retrieving the assets possessing those features from the generic
domain model, checking the mutual consistency of the assets, and configuring
them into the new system. Specification of the required features is done by the
developer; all the other steps are performed by the KBSEE.

Tool 6: Johnson Space Center Tools

Cell 13 - Domain Engineering - Two projects, ESL and SimTool, are investigating
various aspects of domain architectures and reuse, and are discovering implica-
tions for the domain engineering process.

Cell 17 - Software Engineering - Three projects, REAP, FPP, and ESL, are address-
ing aspects of the software engineering process:

(i) REAP (Re-engineering Application Project) is developing an integrated
re-engineering environment, including methods and tools.

(ii) FPP (Framework Programmable Platform) is focusing on the descrip-
tion, management, and control of the software development process within an
integrated life-cycle environment.

(iii) ESL (Engineering Script Language) is a graphical language for compos-
ing complete applications from software parts in a reusable library, and it 1s
investigating a process for composing applications.

TECHNOLOGY NOTES

Tool 1: Eli/InQuisiX

Cells 13, 15, 17, 19;E-G - The Eli (InQuisiX (TM) Software Synthesis System in-
cludes a graphical user interface and a library system. The library system sup-
ports classification, retrieval and management of components. InQuisiX was
developed under an SBIR; the company is preparing a commercial product.

Cells 22E F - Identify a set of measurable reuse attributes for object-oriented systems
and design a prototype tool to take these measurements.

Tool 2: HyLite

Cells 6F,G - Applying object-oriented DBMS methods for software reuse.

Cells 13F,G - Applying hypermedia technology.

Cells 15-19 F,G - Applying Al techniques for navigation in databases.

Tool 3: SEAL

Cells 6E-K - An object-based design methodology has been defined in the SEAL.
Applied to a flight software project and published in several papers. The guide-
books of Asset Cell 23G will define a suite of object-oriented methods to be
used in the SEAL for analysis, design, and implementation. Training in these
chosen methods will be given at LaRC. The SEAL provides feedback to software
development tool vendors about features that are desirable.

Cells 8G-J - Many of the code modules developed in the SEAL are in the form of
reusable, generic, Ada packages. Ada has been adopted as the development
language for the SEAL. SEAL guidebooks for developing reusable Ada com-
ponents/systems (See Asset 19G) will be the basis of reuse training for new
personnel. The generic Ada packages will be made widely available via asset
repositories such as COSMIC and AdaNET.

Cells 10F,G,I - The domain analysis of Process 13G will identify the feasibility of
megaprogramming in our domain by determining the common building blocks
in our systems. New systems will be megaprogrammed from existing reusable
assets, which have been designed with standard protocols, methodologies, and

hardware in mind.

Cells 15E,G - The domain analysis of Process 13G will identify attributes and
facets of our domains that will enable us to develop classification schema. for
our reusable assets. These schema will be initially implemented using the
ELI/ARCS reuse tool system developed under a LaRC SBIR.

Cell 24F - The SEAL will be identifying metrics to measure all aspects of the software
development process, including reuse activities. These will be formalized in the
guidebooks of Asset 23G.

Tool 4: RBSE

Cells 6-24) - AdaNET provides information about a range of reuse-related tech-
nical and non-technical issues. Information on these and other topics may be
available.

Cell 13E - Trade study
Cell 13F - Feasibility study

Cell 13G - RBSE’s opérationa.l reuse library component, AdaNET, has developed
and operated a prototype reuse library. The system is to be upgraded this fall.
System will include X-windows, MAC, and PC-based GUL

Cell 15E — RBSE has sponsored work by Dr. David Eichmann and others to develop
lattice-based classification schemes of reuse libraries.

Cell 15G - AdaNET (see 13G).
Cell 17G - See AdaNET (see 13G).

Cell 19E - RBSE provides active support and leadership to the Reuse Library In-
teroperability Group, an organization developing consensus-based standards for
interoperability among government-funded reuse libraries.

p. 32

Cell 19F - RBSE is holding discussions with another reuse library to prototype
interchange of assets.

Cell 19H - RIG (see 19E).
Clell 22E - RBSE has conducted trade studies on certification metrics.

Cell 22F - RBSE is evaluating the feasibility of certification metrics with off-the-shelf
tools.

Cell 24E - RBSE co-chairs the RIG technical subcommittee on metrics.

Cell 15 - LEARN-92 will provide an automated mechanism for hierarchical classifi-
cation of code components, based on faceted descriptions of these components.
A unique aspect of the faceted descriptions is that the facet space is extendible
“on the fly” by the user who is placing a component into the system. The
user is encouraged, but not required, to use existing facets in describing a new
component.

ool 52: KAPTUR

Cell 13 - KAPTUR employs a novel user interface approach which is based more on
direct display and manipulation of the database rather than queries.

Cell 15 - KAPTUR's approach to asset classification uses a typing structure includ-
ing both domain-independent and domain-dependent asset types. Within a
type, assets are classified on the basis of their features. The KAPTUR concept
of feature is broader than that found in the Software Engineering Institute’s
Feature-Oriented Domain Analysis (FODA) method.

Too] 53: KBSEE

Cell 8 - The domain model, as stored by the KBSEE, consists of a hierarchy of
generic assets, each of which possesses certain features that make it suitable or
unsuitable for a given application. The generic assets are created through the
process of Domain Analysis, which abstracts the functionality found in existing
and planned systems in the domain.

Cell 10 - The highly automated concept of software development supported by the
KBSEE makes it suitable for megaprogramming. The development process con-
sists of configuring assets each of which can each represent a complex capability
in its own right.

Cell 15 - Assets are organized into whole-part and class/subclass hierarchies. In
addition, assets possess features (similar to the notion of feature in the Software
Engineering Institute’s FODA method), which are used to determine which
assets should be retrieved to meet the requirements of a new system. Features
are described as mandatory (must be present in any system), variant (one of
several variants must be present in any system), or optional (may or may not
be present).

Tool 6: Johnson Space Center Tools

Cell 6 - Object-oriented methods: one project, re-engineering the Mission Opera-
tions Computer to an object-oriented design, is evaluating the feasibility of us-
ing object-oriented technology in a previously assembly-language, mega-system
domain.

Cell 10 - Megaprogramming: ESL is investigating exactly this type of problem, and
an entire prototype has been built and is being tested.

Cells 13-19 - Libraries: NELS (NASA Electronic Library System) and RBSE (Repository-
Based Software Engineering) are related projects that are building a reuse li-
brary system that addresses many of the areas on this chart.

ASSETS NOTES

Tool 1: Eli/InQuisiX

Cells 6-16, E-G - The InQuisiX system supports the reuse of many types of compo-
nents including: designs, code, documentation and test procedures.

Tool 2: HyLite

Cells 6-14, F-G - Developing versatile system that can be used to manage and reuse
these types of assets.

Tool 3: SEAL

Cells 6G,H,J -16G,H,J - The SEAL has adopted an “expansive” view of reuse, where
all products of the life cycle may be reused and composed of reusable products.
Assets will be developed following pertinent software, hardware, communica-
tions, and user interface standards. Documentation will follow the NASA Soft-
ware Documentation Standard. All assets will be made widely available via
asset repositories.

Cells 19G,J - A guidebook for developing reusable Ada components and systems will
be developed by the SEAL. This is a deliverable under a task being conducted
by the SEAL for the Code QE Software Engineering Program.

Cells 21G,J - A guidebook for transferring reusable Ada software in NASA will be
developed by the SEAL. This is a deliverable under a task being conducted by
the SEAL for the Code QE Software Engineering Program.

Cells 23G-J - Tailorable software engineering process guidebooks are being developed
for the various SEAL software domains. These guidebooks will incorporate
standard, existing methodologies and tools as much as possible. Future training
for SEAL and other LaRC personnel will be tailored to these guidebooks. These
guidebooks are deliverables under a task being conducted by the SEAL for the
Code QE Software Engineering Program.

Additionally, an annual SEAL report is planned that will assess the scope,
development processes, and transfer mechanisms for reuse of software products
for NASA Ada projects.

Tool 4: RBSE

Cell 6J - AdaNET (see Technology 13G).
Cell 8J - AdaNET (see Technology 13G).
Cell 10J - AdaNET (see Technology 13G).

(

Cell 12J - AdaNET (see Technology 13G).

Cell 14) - AdaNET (see Technology 13G).
(

Cell 16J - AdaNET (see Technology 13G).

Tool 51: ARN-

Cell 10 - The focus in this effort is on code components, but the classification
mechanisms being implemented in LEARN-92 could work for other forms of
assets as well. The emphasis is due to a current need within GSFC/Code 520,
where there is a growing collection of reusable C++ components being circulated
among developers, and a need to organize the components in a form that makes

it easy to locate reusable code.

Tool 52: KAPTUR

Cell 21 - KAPTUR provides a mechanism for the rationales for various engineering
decisions to be recorded. These can include after-the-fact lessons learned from
the particular decisions made.

Tool 53: KBSEE

Cell 6 - The KBSEE effort has focused to date on the storage of generlc requxrements
specifications and the automated conﬁgura@xon of requirements specifications
for new systems based on the generic versions. The methodology encompasses
other life-cycle products as well.

T

wreqy g
RO N

3. Proposed Actions

During the wrap-up session, the workshop participants discussed ways to leverage
their individual software reuse activities into a coordinated program to address NASA’s
software development needs and to promote software reuse as an integral part of the
NASA software development process. The participants concluded that these objec-
tives can be accomplished by coordinating their software reuse activities and mar-
keting their activities to NASA Headquarters as a coordinated, focused program to
advance software reuse throughout the NASA community. The following preliminary
action items were agreed upon:

e Use this workshop document as the basis for a proposal to potential sponsors.

e Form a Software Engineering and Reuse Team focusing on NASA problems.
This team is to be led by either LaRC or ARC. Team members are to in-
clude ARC, LaRC, LeRC, GSFC, JSC, JPL, MSFC, HQ, Rome Laboratory
(Air Force), COSMIC, DARPA (ASSET), RBSE. This team should combine
with SATWG/

SAAP Software Engineering Subpanel, chaired by E. Fridge of JSC.

o Determine customer needs for the near term. This will be accomplished by
looking at existing advocacy packages, by presenting current software reuse
activities to HQ, and by soliciting feedback from HQ.

e Use Code R Block Grants as a mechanism to influence software reuse in univer-
sity curricula. Candidates are University of Nlinois/Urbana-Champaign, Stan-
ford University, University of Maryland, and Harvey Mudd College.

References

(1] James W. Hooper and Rowena 0. Chester. Software Reuse: Guidelines and Meth-
ods. Plenum Press, New York, 1991.

[2] G. Caldiera and V. R. Basili. Identifying and Qualifying Reusable Software Com-
ponents. Computer, 24:61-70, February 1991.

[3] E. J. Joyce. Reusable Software: Passage to Productivity? Datamation, 34:97-98,
September 15 1988.

[4) B. J. Shelburne and M. J. Pitarys. Avionics Software Reusability Observations
and Recommendations. In Proceedings of NAECON, pages 614-619, 1991.

[5] T. Biggerstaff and C. Richter. Reusability Framework, Assessment, and Direc-
tions. In Proceedings of the Twentieth Annual Hawaii International Conference

on System Sciences, 1987.

[6] S.J. Voight and K. A. Smith. Software Reuse Issues. Conference Publication 3057,
NASA, November 17-18 1988. Proceedings of a Workshop held in Melbourne,

Florida.

S

APPENDIX A: Workshop Attendees

Wayne Bryant

NASA Langley Research Center
Mail Stop 478

Hampton, VA 23665-5225
804-864-1692
wayne@uxv.larc.nasa.gov

Kathryn Smith

NASA Langley Research Center
Mail Stop 478

Hampton, VA 23665-5225
804-864-1699
kas@csab.larc.nasa.gov

Floyd Shipman

NASA Langley Research Center
Mail Stop 478

Hampton, VA 2366-5225
804-864-1706
shipman@scab.larc.nasa.gov

Randy VanValkenburg

NASA Langley Research Center
Mail Stop 125A

Hampton, VA 23665-5225
804-864-7933
vanvalke@voyager.larc.nasa.gov

Edward Ng

Jet Propulsion Laboratory
CIT

4800 Oak Grove Dr.
Pasadena, CA 91109
818-306-6166

MS 525-3660
edng@nasamail
edward_ng@isd.jpl.nasa.gov

Jim Golej

MITRE Corporation
Mail Code PT41
Houston, TX 77058
713-333-5020

Deborah Cerino

Rome Laboratory/C3CB
Griffiss AF Base, NY 13441
315-330-2054
cerino@softvax.rl.af.mil

Sidney Bailin

CTA, Inc.

6116 Executive Boulevard
Rockville, MD 20852
301-816-1451
sbailin@cta.com

Barry E. Jacobs

Code 934

Goddard Space Flight Center
Greenbelt, MD 20771
301-286-5661
bjacobs@unssdc.gsfc.nasa.gov

Scott Clark

COSMIC

University of Georgia

382 East Broad St.

Athens, GA 30602
404-542-3265
scott@cosmicl.cosmic.uga.edu

David Dikel

Applied Expertise

1925 N. Lynn St.

Suite 802

Arlington, VA 22209
703-516-0911
ddikel@ajpo.sei.cmu.edu

Charles W. Lillie

SAIC

1710 Goodridge Dr.
McLean, VA 22102
703-749-8732
lilliec@source.asset.com

Jack Tupman

Jet Propulsion Laboratory
CIT

4800 Oak Grove Dr.
Pasadena, CA 91109
818-306-6182

MS 525-3660
jack@jade.jpl.nasa.gov

Joe Jupin

Jet Propulsion Laboratory
CIT

4800 Oak Grove Dr.
Pasadena, CA 91109
818-306-6161

MS 525-3660
joe_jupin@isd.jpl.nasa.gov

Charlotte Scheper

Research Triangle Institute

P.O. Box 12194

Research Triangle Park, NC 27709
919-541-7116

cos@rti.org

Janet Dunham

Research Triangle Institute

P.O. Box 12194

Research Triangle Park, NC 27709
919-541-6562

jrd@rti.org

Gail Loveland

Research Triangle Institute

P.O. Box 12194

Research Triangle Park, NC 27709
919-541-6330

gl@rti.org

Larry Preheim

Jet Propulsion Laboratory
CIT

4800 Oak Grove Dr.
Pasadena, CA 91109
818-306-6042

MS 525-3660
Ipreheim@jplisi.jpl.nasa.gov

Robert Baker

Research Triangle Institute

P.O. Box 12194

Research Triangle Park, NC 27709
919-541-7401

rib@rti.org

Dave McLin

Research Triangle Institute

P.O. Box 12194

Research Triangle Park, NC 27709
919-541-5828

dmm@rti.org

Ed Withers

Research Triangle Institute

P.0O. Box 12194

Research Triangle Park, NC 27709
919-541-6311

bew@rti.org

Appendix B: Viewgraphs Presented at Workshop

A

Software Reuse
Tools Workshop

NG /

Langley Research Center /Systems Architecture Branch Kathryn Smith 1

4 1 \

Exchange Information on
« Software reuse tool development
« Software reuse tool needs, requirements
and effectiveness

Identify critical issues and needs in software reuse

Identify opportunities for cooperative and
collaborative research

\W!mmusmw —e”’ P. 43
Langley Center /Systems Architecture Branch Kathryn Smith g

Software Reuse Issues

Defining software reuse

What are NASA's Requirements?
What will be the benefits?

What needs to be done?

Can we quantify our results?

\NIW\ National Asroneutics and Spece Adrministraion

\

/

Langiey Resesrch Center /Systems Architecture Branch Kathryn Smith §

f" | I
ARE RE P M
What are the obstacles to software reuse?
People are resistant - why?
Tools and techniques to:
Develop reusable software
Identifying potentially feusablesoftware

Storing and retreiving reusable software

\

.

P. 44

\@mmmmm

Langiey Ressarch Center /Systems Architecture Branch Kathryn s,nm

HPCC Software Sharing -

Schedule
Software, Data Open Architecture Working Group \

Operational
System

& Bibliographics 7
Expenments I Prototype #

System

Input for
Prototype Input for
Operational

_System
1991 1992 1993 1994 1995 1996

HPCC Software Sharing

' HPCC Software Sharing
Experiment- Logical Library

HPCC Logical Library

- A

All HPCC participating
organizations appear

as part of one large SueinBod S
"logical library". a a °‘°"°“i l ! E"“
Searchmg gmﬁm Main

Department Department Room

‘.\‘)
o

Stacks Suggestions
Box

HPCC Software Sharing

HPCC Software Sharing
Experiment- Software Shelf

All Software Databases
are accessible either on
the shelf or via the
Catalogue of Software

% Databases.
|

HPCC Software Sharing

Software Shelf

Netlib GAMS Citlib Softlib
Cross-Index Cross-index Repository Repository

CUGDUS -Cosmic NASIib MASPAR
Catalogue Repository Repository Repository

i. N B -

Supemet NTIS Catalogue of Software

Catalogue Catalogus Databases

HPCC Software Sharing Experiment-
Software Searching Department

Software Searching Department

Software Searching
Department helps users
locate relevant software.

HPCC Software Sharing

4 L W

Reference Request Forms R&D

Librarians Databases Shelf
Software Standards & Facilites &
Databases Shelf Procedures Organizations

Databases Shelf Databases Shelf

-

Misceilaneous Sugguestions
Sheives Box

HPCC Software Sharing
Experiment- Software Databases

All Logical Library
holdings may have

multiple user interfaces.

HPCC Software Sharing

Netlib Cross-index

vV E E

Description vT100 X-Windows
VT1°° X-Windows Netiib
Book Suggestions

Exit

KAPTUR

Knowledge Acquisition for Preservation of Tradeoffs
and Underlying Rationales

A Tool for Preserving and Bullding on Engineering Legacy

Presented by:

Sidney C. Bailin
CTA Incorporated
6116 Executive Boulevard, Suite 800
Rockville, MD 20852
(301) 816 - 1200
sbailin @ cta.com

WHAT IS KAPTUR?

INCORPORATED
. KAPTUR Is a tool designed to be part of s reuse-based software development
eavironmenl.
. KAPTUR has gone (hrough two phases of protolyping:

— KAPTUR ‘89
— KAPTUR ‘%

. Efferts are underway to bring the tool from s laberatery environment to software
developers.

— KAPTUR 1.0

KAPTUR GOALS AND OBJECTIVES

INCORPORATED

SUPPORY REUSE OF SOFTWARE ASSETS
Capture engineering decisions/rationales that went into their deveiopment

PROVIDE AN EASY TO USE ENVIRONMENT FOR ACCESSING CAPTURED
KNOWLEDGE

RATIONALE / BENEFITS

INCORPORATED

COST SAVINGS THROUGH INCREASED SOFTWARE REUSE

. 49

HOW DOES KAPTUR ASSISTIN REUSEZ

INCORPORATED

KAPTUR handles more than code components.

— requirements
— design
— lest (planned)

. KAPTUR keeps a representation of components and knowledge that would assist
in determining which particular components to reuse.

. Components themselves aren't kept in KAPTUR.

. KAPTUR provides information on where the components are kept (not
implemented).

WHAT FORM DO COMPONENT
REPRESENTATION AND KNOWLEDGE TAKE?

INCORPORATED

Dowain Model

(What) Knowledge

{Why)

Generic Previous Sysiem

Archisecture(s) _Archiectures Features
+ Mubtiple Views : _?ecmot::
. Dty Relationship Di * Rstionaics

- Classification Diagram

KAI"FUR not only stores representations of systems, but also stores key
development decisions and the reasons behind the decisions.

Reusable Artifacts

Similarities & Differences

Rationales

Underlying Issues

Figure 4-1: Layers in KAPTUR's Knowisdge Base

HOW IS THE REPRESENTATION AND
KNOWLEDGE CREATED AND USED?

INCORPORATED

Supply Demend
Syseem
Domaia
s meponsibic
hhmE;L building new symems
crestes the domain legacy

G

Development-For-Reuse Expen Developmont-By-Reuse Expent
understands browses domain legacy
what mahes & component and sssists in selecting
attractive for reuss components for reuse

The continuous feedback loop between the supply

aml the demand side is the key 1o rease

. 51

Pigure 2: The Basic KAPTUR Screen Provides a Miersrchical Mep
of Altemnatives and 8 Stack of Pages Describing Them

g7!20.!!('.»!2 Arcnitecture Idanalty
Domen
‘—--—---—————-—
|
1 ‘ _ i ,"]
impont or idenly Place New
Orswiew || Fessuresot || Architscure Print © Go Down
Architecare New Among Flle or o Lovel
Disgrara Architecurs Alemnstves Paper
A Y
\
\
\

Enter Consu Specity Type
Rationsies, | With of Lower
Tradeotts Developer Lavel Asset

Recora of Mogified
Domain Mogel
mmmummmumwm

Recerding of Retionaiee, and Plecernsmt

Overaill Domalin Model

of Them Within the Context of an

y Revse

Se'2cteq

Jeuse Reauirementsy Solsat
Doman
r Examne

-------- ARemave
i i Architecaures
'
|
!
1
| 1
! Exarone Examine Ge Down Part 10
! Diagrams Features or Up Fila or
| Lovels Paper
|
]
I
|
1
i Examin
I Ratioraies. e
| Tradeots
|
i
1
1
|
[

Examine Arcni-
Lo - = = ARprng- tectures
tves ___-.

The KAPTUR Dermund Side Supperis Browsing of Aernaifves,
Understanging Decisiens, snd Selecting for Reuse

KEY. CONCEPTS IN KAPTUR

NCORPORATED

ASSEY
. Any software product that can be reused In future develiopments

+ Includes systems, subsystems, objects, functions

ARCHITECTURE
« A description of the structurs of a software asset

« Uses one or more graphical views

GENERIC ARCHITECTURE
. An architecture that can be instantiated or tallored to mest varying requirements

DISTINCTIVE FEATURE
. Any significant way in which an architecture differs from its alternatives

. The way in which an asset manifests a significant enginesring decision

KEY CONCEPTS IN KAPTUR (continued)

INCORPORATED

ALTEANATIVES MAP

. A hierarchical description of alternative architectures for a given type of asset

ROMAIN MODEL
. The legacy of knowledge about an application domain

. Packaged for easy access and reuss

SUPPLY SIRE
. The creatlon/maintenance of the domain model

+ Incorporation of new assets as they are developed, with features and rationales

REMAND SIOE

. Access to the domain model for the purposs of reusing the assets it contains

KAPTUR ENVIRONMENT DETAILS

INCORPORATED

WRITTEN IN C
+ Approximately 45% of code Is automatically generated

USES TAE+ YERSION &

. Should run on any UNIX system supporting TAE

. 54

SOFTWARE ENGINEERING

PLANNING and MANAGEMENT DEVELOPMENT

Software Managemant Environment (SME) Knowlodge-Based Software Englneering
Environment (KBSEE)

The Software Engineering work addresses a full spectrum of activities needed to:
1. plan, manage, and monitor the development of, and

2. provide for the efficient and effective implementation of

complex operational systems.

Basic
Knowledge-Based Software Engineering Environment

(KBSEE)

® Incorporates the Evolutionary Domain Life-Cycie (EDLC) Model

GOALS OF THE RESEARCH:
IN RESPONSE TO NASA SOFTWARE ENGINEERING INITIATIVE

Sustaining Engineering Scfthlx’re:j Reuse]
. le domain specification
- family of software systems : reusa i 1
- evolution of domain models : :t:::l'::: ggzam architecture

- evolution of targel sysiems

~

Architectural Framework
for
Software Evolution
and Reuse

!

Enabling Technologies
- software process modeling
- object oriented methods & tools
- knowledge-based tools
- object mansgement

EVOLUTIONARY DOMAIN LIFE CYCLE

:','h::o.-“ Targst System
plonm Requirements

sad Constralnts
Domals

Modaling

Moddl Terget Target
e — Sysiom e - § yitem
Genorstion

» Makes no distinction between development and maintenance
+ System viewed as evolving through several iterations

+ Life-cycle for family of systems

. 56

PROOF-OF-CONCEPT EXPERIMENT

Domain Modcling

- —
Applicatios e S) ‘
Domsla i Ly R R SRR I
Tnformation B S . RS
S Domaein aan . E
Ansiysls .) o,
a-ol S
y‘%: - <o S B *
-:% e Reusable
- 615 Reusable Domiln N
o s Maquirements Domaia .| specincation
' BT Specification
o
.3
e T

Torget System Turget Vel System
Requirements Sysiem wom) Specificatien
_— Requirements P
Elkltaion

Unmtisfled Requirements, Errors, Adsplations

EDLC PROOF-OF-CONCEPT EXPERIMENT (EPOC)
GOALS

Demonstrate viability of Evolutionary Domain Life Cycle Approach
Create tli_emonstmtlon version of Knowledge Based Software Enginesring Environment supporting

Oomain Modeling
Address Domain Analysis and Specitication

Target System Generation
Address Knowledge Based Reguirements Elicilation

. 57

EDLC PROOF-OF-CONCEPT EXPERIMENT (EPOC)
FEATURES

Toot Support for Developing Domain Specification
Provide support for Domain Analysis and Specification Method
Create multiple view graphical representation
Store Domain Specification
Map multiple views to common underlying representation
Store in object repository
Multipie View Consistency Checking
Determine whether Domain Specification rules obeyed
Generate Target System Specification
Tailored version of Domain Specification

Knowledge Based Requirements Elicitation

EDLC PROOF-OF-CONCEPT EXPERIMENT (EPOC)
APPROACH

Off-the-shelf CASE tools where appropriate
Software Through Pictures (StP)
Provides graphical front end
Open systems architecture
Object Oriented Programming Language Support
Eiftel Language
Compiler and component library
Persistent object store
Investigate NASA developed tools where appropriate
TAE User Interface Management System
CUIPS knowledge based system sheli

. 58

Multiple Views of Domiin Spec

Proof-ol-Concept Lxperiment
Domain Modeling:
Creation of Domain Specilication

Objeet Communication Diagralm

\D Dugmin Spec Domain Object
a icture Repository
clations

g)
—

!

Aggregation Hierarchy

==

Nodes

]

Arcs
Domain Spec

Domain Spee Generator &

@)-D-1D
1) @@

Picture E Mutiple View
N Extractor & . Counsistency
Geaeralization /Speciali Consistency Checker
Hierarchies ! Checker -
Ise”
L & y
(Ststa Transition Diagrams Detailed Feature/Object

Object Specs Rules

[]

Stats 1
Evemt
Action

\ |sz| Y,

Prool-ol-Concept Experiment o
- . < . Mulliple Views ol
I'arget System Generation: Target System Spec
Generation of Target System Specification

Target Sysiem
ob ication Diag
Multiple Views ject Communication Diagrams

of
Domain Spec

Target System
bjects

e g (" Torget System W
Objects Aggregatioa Hierorchy
@ B Kppistietomd \ [1L T rﬁ—ﬂ
Elicitation Generator
Tool
E-CS) ’

B @.—@ Target System (" Tagnsyum
Requirements \ Stata Transitios Disgrams

Johmson Space Center]
ASA ez i
mrmo«-n-J

REUSE PROJECTS WITHIN JSC's
SOFTWARE TECHNOLOGY BRANCH

presented at the
SOFTWARE REUSE TOOLS WORKSHOP
Research Triangle Institute
May 5-6, 1992

J. W. GOLEJ +, D. M. DIKEL **,

C. L. PITMAN, and E. M. FRIDGE lll
NASA/Johnson Space Center/PT4 _1
- T::ﬁ??;fncomnuon ** Appiied Expertiss, Inc. . Software Technology Branch —_
. - Introduction
- Presenters

- Support Contractors, not Clvil Servants -

« MITRE supports STB in Software Technology Infusion

gg:mﬂ E:so(glasg Ea)ct; ya l'-'llo s liaison tor Repository Basef! Software

- Representing JSC's Software Technology Branch

« Its projects and activities

+ lis viewpoints

« Points-of-contact, NASA JSC/PT4 Houston, TX 77058

- Emie Fridge, (713) 483-8109
- Dr. Charles Pitman, (713) 483-2469

« Intent is to provide a broad-brush overview of our reuse activities vs. detailing
the projects’ technical or other merits to

- Stimulate discussions
- Foster information exchange

CLPjwy - 5482

Software Technology Branch —————

hﬁ-de-iq;Div-u
Agenda

+ Themes
 Projects
« Observations, etc.

Software Technology Branch

Themes

« As many different meanings for REUSE, as there are reuse-related projects

- There is no specific group dedicated solely to reuse, but projects are
(e.g., RBSE)

- Each project has specific goals
- Describing the projects will define how they support reuse
« There are economic and other benefits to reuse
« Reuse is a goal. It will be worked on and improved over time
« Reuse can be faciiitated
- Transition from opportunistic to systematic reuse posture is underway

h
CLIywg - 3P Software Technology Branc ”

. 61

s REAP

proect NAMme deveioper i funding source
Re-Engineering Application (REAP) JSC/PTA T Barrios, ISD-Internal

MITRE

PUPOS/QONS
. Ease maintensnce burden and provide re-anginesring for JSC legacy systems

- Hugommmﬂhdﬂalﬂo—mahtﬂn,yﬂWumnﬂn programs
. mwmmm,mtmmmmaommmw

- pruhuwimﬂdonus
» Provide Mgnmymmmmg ap&lummmmunghquymlm into more
malntainable, modern, and betier systems
. Provide Methods, Standards, Tools, and Data integration to faciiitate the re-implementation
. Fmonmmoﬂcowmﬁlmmhﬂmmnoptovidoomnnﬂuumnlhbhupabimm
. Iwummm.omsynmbmdmmm.nvlmmnmm
saus * Deliversbles
. nwmom.z—mmnm.:sasmmcors iools under common presentation control for
mmmmmummmwcoueensmromm
- nmmu(uwmmpmHmumcomtmﬁommmc. Includes data
W(me«)mmmmmw:mmwwmm
« Schedule
- WWWWMM;MCWMﬂCYH
- Wummwmmuom
. integrated REAP in JUNSS
. Support for reak-time information capture, other languages
L . Software Technology Branch ——————
£t Prwe - V4MD
Johason Spece Center |
NS/ siomam oo
=) REAP
PrOpc name
Re-Engineering Application (REAP) Reuse Aspects
e+ PrOGTM Gewgn, LA, Gall Grapha, gument Hat, .
+ Reguirements-polentially
+ Standarde
« Mathodologies
« Tools and Tool Environments
aperion
. mdmmumsaummdmmmmmmmmmm
slectronic form in a repository
. WWWMhmcwhmwmmymmmm
indormation %0 obiain
congirsints
. vmdmmmmumnmmmmmmm
ditferences
. Tmmmuwuwwmmmmmu
the process snd products of software development
fndings . mwmmmmmnwwm
. Mummwwmmummmm
. Domein knowiedge often no longer available
- mmmwmmmnumwmuunwmmdonm
+ Customer/Market driven fervor

11w

yAp}

Software Technology Branch ————

6

. 62

m—m——— SimTool
proyect name deveioper conaciorn undIng source
SimTool JSC/PT4 LinCom SBIR

Purposa/gosls

« Ald simulation designers in the construction, use, snd maintenance of simulation applications, data, and
math models from reusabie parts and domain architecturss

- Provide a faciiity thet transiorme & user-construcied graphic spacification ot a simulation into appropriate
Ada code

+ Deliverables

- rmmumumwwmmwlmum.mwm
« Schedule

- Phase | (Prool-Of-Concept) completed Summerss

- Phase il (Developmental) ends Fall's2

Software Technology Branch ——————

7

SimTool

SimTool Reuse Aspects

+ Yo construct simulstion, user bulids an Appiication Specification by selecting an appropriste
appiication interface, and math modeis from among the reusabie software components in library

« Application specs identify components 1o be integrated and relationships 10 sach other and simulstion
+ Exscutive software componants control the stsie of s simulation application snd coordinats its exacution
« Appilicstion 1 components bridge meth models and sxecutive, and establish domein architecture

« All Software Components must conform 10 intartace and control standards
= To assure integration
- To encourage development of modularization, reussbility, and object orieniedness
. MWWWMMMWMhM(m

CLPywg -

Software Technol Branch —m—-
UM ogy s

. 63

Pk il Mission
Proect name Geveloper CONtracsor fundang source
Mission JSC/PT4 UHCL HQ/Code R

. pudicwalynndnﬂ.ﬂywmudniwmmﬂ‘lycﬂtlw(mcnmwmsmm

« Transiorm modals into real worid sysisms praserving the MASC properties
. Wmmmmmlnmm&owdwmmnﬂumahnlnumhud.

mmwmmmmmmwmmmwﬂ.
Support both precise and formal levels of modaiing discipline

stabs
« Deliverables
. Clear Lake Life Cycie Modsi (CL-LCM)
- Object Management System (OMS)
- Ubrary Management System (LMS)
« Schedule
- ommwumm—unmmmmmmmﬂu
- mwm,mmmmmwmnnu
Software Technology Branch 3
CLPjwy - S4A2
—[nu\s/\ demain$avms D
Taformation Technology Divisice . .
Mission
PrOc name
Mission Reuse Aspects
eniliss - Computer and software processes/models
+ Computer and soltware producta'modsis

« Computer and software intertaces/modele
« Libraries of the above, including specific views and configurations

opession . Euolution will siweys begin by updating the model and then procesd to update the existing, sysiem o

thet its structure and behevior continue to mitor the MASC properties of the rigorous model
+ Significantly extend traditionsl entity-attribule / relstionship-attribuie representations of semantic modeis

+ Provide herarchy of structures and discipiines for evolving and susiaining tracesbile sets of sementic
models: abetract 11 specs, virtual I sets, siable frameworks of subsystems, and stable U sets

-)
+ Behavior and structure 10 support a rigorous discipline of composing models 1o tractably subject
MASC subsets of the prscise models to formal methods
Wdngs - Pormal models and methods have not besn trectable for large, compiex distiibuted systems with MASC

functions and components.

. memmuwmmmmmmmu
MASC applications and systems. Object-besed discipiines are insutficient: Precise fine-grained modeis
MMMWMWNMMbMMM#M

. AWMEM»WMM

Software Technology Branch ——-———J

CLPywg - SHA2

. 64

=Ty RBSE

Repository-Bassad Software Engineering (RBSE) JSC/PT4 UHCL, ot al. | HQ/Code C
PUPOsI/gORS

+ Distribute technology across many industries and domains. Dellver and support robust product set
- Commit to customer-driven quality. Consistently monitor and increases customer benefits

- Serve high-leverags, high-impact civilian markets (Le., ssrospace, education, and mission- and salety
critical) alfecting U.S. competitivensss snd from which technology spreeds quickly

- Introduce reuss into customers’ mainsiream software development practices so as to have them paraliel
the ciarity, consistency and predictabllity of other engineering disciplines

- Make reuss tools, sssets, and practices more sasily/economically accessible. Apply human factors
enginesring, sxplors classification schemes, develop genersiized lile-cycie process model, and heip lead

coopsrative sfforts
. :oplm outdated n:chlt:::'m limiting system responsivensss and capability with open-systems-based
| librery management system
sians
» Deliversbles
- Operstional prototype
- Highly capable service organization, skilled in cataloging, managing, and delivaring software assets
[AdeNET Heip Desk: (800) 400-1458)
- Saler, higher quailty products jor NASA
« Schedule
. Public-domain software reuse library (AGaNET) in operation since 1989
- Enhanced functionallty/performance capability in SEP92 (L.e., NASA Electronic Library System (NELS))
T Software Technology Branch n

e RBSE

Repository-Based Software Engineering (RBSE) Reuse Aspects
endties -+ Standard ilfe cycle practices

+ Standard ile cycis components
« Reuse libraries, customized In technology and service

opeaion ., Expand bese of Nbrary suppliers and customars through interoperability
+ Share advances of other repositoriss
+ il critical technology gaps through ressarch
+ Adapt to changing customer requirements by integrating resesrch resuits and COTS/GOTS products

constramts + Cooperation, essential
» Breadth of R&D programs, critical while technology and practioe of feuss matures
- To sncourage development of modularization, reusability, and object orlentedness

. mlpwuhm“wmmbmmm Effective reuss
ammummwmmwmmdmwwm

+ NASA can maks a major contribution $o0 the solution—bolh &s & source and a reuser
. Mmmmlomzmmmmmmmbmm (I.e., cooperation)

Software Technology Branch ——-—EJ

ClLPywg - 3342

r

Johnson Space Center]
tafo Sy Py

INASA
n PCS / ESL
proiact name ' Oveiopst COMIacKN nna w\a
Parts Composition System / Engr. Script Language | JSC/PT4 inference | H :5" &
- STS
+ Reuss software within domains
. Permit a domain specialist (ssrospace engineer) with minimum Ada experience to define compieted
appiications from reusable components

. Permit domain specialist to modity snd creste drivers (srchitectures)
. Automatically generate high-level code from domaln specialist's graphical specification
« Decrsase iong-term software costs
« PCS—catalogs of Uibraries of parts and knowiedge base to heip link parts together
+ ESL—graphical logic editor for spacitying connection of reusable componants

“alus

» Deliverables
.= On schedule

- Working prototypes of both PCS and ESL

Schedule

- Prototypes deliversd end of FY$1

. Prookol-concept lesting of typical sngineering applications due end of FY§2
. Enhancements based on feedback in FYS3

CLPywg -

SN

Software Technology Branch ——————

13

—— PCS / ESL

propc name i
Parts Composition System / Engr. Script Language Reuse Aspects
ewnes - Rousable, domain-specific softwere parts (primitive modules + drivers/graphs)
» Catslogs of parts
+ Librariss
opersion * Developer retrieves graph from library, invokes sdior, and modities graph producing driver
different architecture and/or modules nev win
+ Graph transisied 1o high-level langusge such as Ada
+ Meiadata shout application and required input, passed to knowiedge base to configure IUl
« User sslacts appropriate input sets, composes compiste dsta package. Application ready for execution
consiraints
« Modules must adhere 1o standards o be inciuded In lbrary
Wndnos - Not il modules are reusable without adaptation

. Moduies should contain standard types of metadsta for parsing and inclusion into the knowledge base
for the abplication developer

C1 1wyt

SHAMD

Software Technology Branch ————-

14

. 66

Johasea Space Center]

Informaucn Syssems Dunciorms
lalormatson Technology Divisson

nnsa

APPLICATION DEVELOPER'S A

PARTS COMPOSITION

SYSTEM | ey
STATU_INIT 2
PROP_SEL |
INPUT
AND
: APPLICATION n oy
R METADATA REUSASLE DATA
3 _SEIS
R KNOW
: ESL EDITOR LEDGE
i File Edik Creste Level Transiate
-+
KNOW JLEDGE i Friendly
interface Knowledge f
LDRFSIM 1 3
SUBGRAPHZ
D4 SUBGRAPHI @
T
3 “:2:::32&25‘:2::!=§=R§R§2=§
SDATA
LIBRARY “lﬂ. BDATE = 1909, 12, 18,
LIBRARY OF susGRAPHS | 0000 | .iceeeeeees; T Tarieeeas o n. u.srie
REUSABLE PARTS « enD
METADATA
Software Technol Branch —
CLPywg - SHA2 o8y h 13

Johason Spece Center

nsa

EE= N INPUT DATA PACKAGE

$AUN
® STSI2-NONTE CARLO ANALYSIS/OFP2R CYCLE - -
[] SPS0S0SSPS0SONNONN0SSENSOBBANSESENNSOSORES
. SYNSOL TABLE noos
[] 900802 SC0ETOTRINEISROOSRRNEOOERESERINSS
ssvnooL
oA0D, P $0. SYNBOL
oR0D, P DNSSTCLDEY.GHDS | 1/SYNBOL
L] CHOCOOOSS0SUSSISNONNEESINNE0S20050RESAN00S
. BESIN CASE AND PHASE DEFINITION
[] 9000808008008 00S800000020SSESINNSRON0SASES

SCRSE(O) /NENDEZVOUS PROFILE/

”MSE(lO) /NCt - EXECUTE oOns-2/
] -

STUO VEN. SINULATED
SORBITAL SINULATION
SLIFTOFF DATE

SSTART OF SIN (RECD)

. SINULATION DEFINITION
. -
$OATA
DICTOR = 1
NORBT = |
INANUY = 1
N = 2
KDYN « §
BOATE - 198%., 12., 18,
VECTIN - 23, 5¢4., S52.190
. emw
b NONTE CARLO IHITIALIZATION
' reremreemesnmmmnemm- I
SOATA
ntce e 2
ND1SP =]
oADD,P DNSSTCLDEV.NC-INITIAL/STSB-0

STUO VEWICLE NONTE CARLO
SNAU OFF FOR REFEREMCE
SINIT COU - REF INTO ACT

CLPywg - 5142

—————

Software Technology Branch ”

67

e ~ INTUIT

peoject name deveioper CONracior SOUrce
INTelligent Usar interface (IUl) Development Tool JSC/PT4 [Inference, "RISSFP &
Barrios NSTS |

purpose/gosls

. mmwdwmmmmmmmwuhmmmmnm
. mbmmuuhmpodngmmwtuhmkmﬁommmoroupl.wllh
minimal modifications

. Provids a user friendly graphical interface that presents Information more sffactively and makes interactions
clesrer and mors efficient

. SUppiymlnu!wawmuxpm.yshm)hMuulnpuNotcomlMymhlgodo!mung-
program execute cofrectly on the first run

. Sumyawmmmwddhulmmaums
« Provide a genaric toot configurable to any spplication

stahl
= Dellverables

oo Kmmmwwmwm

- nmmmmdmlmwwMymMﬁum
» Schedule

- Prookol-conospt successfully demonsirated In FY91

- MWDWWMWmcm

. mmmmwmhcm

Software Technology Branch —————

€1 Prarw - SAD 1

L INTUIT

INTelligent User intertace (1UI) Development Tool Reuse Aspects

niles . gyt dets sels
= Ueer interiaces

operalion . Uger invokes a configured INTUIT shell
» Selects an sxisting input dats package cioss 10 hisher needs
» Selecis (and modidies, ¥ required) a few new data groups (0 repiace some of the old
. Ammwuwmmmmwmm,unummu

ore required in the sxisting input structure
constraints
o INTUIT ls most useiul when:

- mmbmmmmmmﬂmmmqmm
- Input structure must be readily reconfigurable

tndngs - INTUIT shell parmits quick and easy buliding of IUts and, therefors, efficient upgrade of compiex
simulation programs. improvements in runstream setup of 50-80% (labor)

+ R, by maiing deta use and reuse sesier and more efficlent
- mmmmumwmmuummmmmw
- Reduce time required for user training

Software Technology Branch

Cliywy $4M2

Informanson Technology Divison

{m/\sv\ Jmmsren o }

Observations, etc.

. Barriers to reuse, both real and procedurally ingrained, need to be
eliminated

- Standards
- Paradigms
- Culture
+ Incentives need to be developed and put in place
- For reusing products developed elsewhere
- For developing reusable products

. Infrastructure must be developed, distributed, and made easily usable and
available to foster high levels of reuse of products of the software life cycle

- Software Engineering Environments
- Repositories/Libraries—tor accessibility

. Reuse does not come free of charge, i.e., it costs to design and develop
- Reusable items

. Methods to make reusable components available and, then, to find,
access, and utilize them

ftw. hnology Branch
—r Software Technology Branc =

Observations, etc. (Con'c.)

- How to design for reuse is not a given, but a developing concept
- Optimum granularity of reuse and reusable components, if it exists
- Domain independence or dependence, or both

- Probably the biggest payback lies with reuse at the process, design, and
mode! levels, i.e., levels more abstract than code P ¢

- Reuse is certainly not the proverbial silver bullet

Software Technology Branch ————~
CLPywg - 3482

. 69

NASA Repository-Based Software Engineering Program

NASA's Repository-Based Softwars Engineering (RBSE) Program

and Collaborative Efforts

NASA Software Reuse Tools Workshop
May 4-5, 1992

Dave Dikel
Appllsd Expertise, Inc.
1925 North Lynn Street, Sulte 802
Arington, VA 22209
518-0011
FAX: 5160918
ddikei@ejpo.sel.cmu.edu
NASAMAIL: DDIKEL

pos NCC # 14 8 No. 109 Page 1
NASA Repository-Based Softy Enginsaring Program
Background - Management Structure
NASA HOQ Onbeer Agoensy
Level 1 Offics of Commarcial Prog poory
Yechnology Transler Division Spenmry
Stesring -
Commities :
NABA JSC Chief
Level 2 Information Systems Scientist
Dirsclorsie ”
Univearsity of Houston
Leveld Cloar Loke
Fossarch Institis for Coamputing and
informalien Solances
[, |
| Research I Product Library
_ Development Operations
NASA Cooper silv¢ Agrasment NCC -9 16 Subcontract No. 101 Page 2

. 70

NASA Reposiiory-Based Software Enginesring Program

Background - History

RBSE has operated a prototype &ubllc-domaln software
reuse library (AdaNET) since 19

Outdated architecture limits system responsiveness and
capablility

Howaver, AdaNET Is now a highly capable service
organization, skllled in cataloging, managing and delivering
software assets

.. Call the AdaNET help desk ~ 800 444-1458
for more Information

y NCC 8 18 No 101 - Page 3

Concept in Briet

NASA Repository-Based Software Engineering Program

Software practice lacks essential elements common to
mature engineering flelds

No one program can solve this probiem - Cooperation is
essential

NASA can make a major contribution to the solution - both
as source and reuser

RBSE Is committed 1o customer-driven quality
RBSE will serve high-levarage, niche markets
Research will make reuse more accessible

NCC $.14 8 No. 101 Page 4

NASA Repository-Bssed Soft Enginsering Program

Software practice lacks essential elements...

. common to maturs engineering fieids, for example:

Standard practices

“Rarely would a buiide: think about adding & new sub-basement lo an

oxisting 100 story budiding; to do so would be very costly and would
undoubledly invite fallure. Amazingly, users of sotware systems rarely think
twice sbout asking for equivaient changes. Besides, they argue, itisonlys
simpie matter of programming.” {G. Booch, Object Orlented Design]

= . shipping the product and getling the details right later.” [Business Week]
Standard components

=, & I highly unusual for a construction firm to bulid an on-site steel mill ta
Iorg’o custom girders for a new bullding...” [G. Booch, Object Oriented
Design]

This Is a Dig problem

NABA C

NCC 9 16 S i o 101 Page

W

NASA Repository-Based Software Enginesring Program

Cooperation is Essential

Without effective reuse of common elements, software
onglnurlnf cannot approach the efficlency and
predictabliity of other engineering disciplines

. Thers are many barriers to rause; no one program can
solve this problem

. Breadth of R&D programs, balanced with cooperation, Is
critical while the technology and practice of reuse matures

+ Technology must get into the hands of users across many
industrles and domains — Reuse libraries customize
technology and services to needs of their customers

- Share advances of other repositories

- Expand base of library supplliers and customers
through Interoperability

e A NCC # 16 & N 10V) Poged

72

NASA Repository-Based Software Enginesring Program

NASA can make a major contribution...

Through RBSE, NASA Is working to Impact mainstream
adoption of reuss, both as source and reuser of
high-quality software assets

+ Replace outdated architecture with high-performance
hardware and open-systems-based library
management system

+ Dellver and support robust set of products
« Flil critical technology gaps through research

» Adapt to changing customer requirements br
Integrating research results and off-the-shelf products

- Broaden customer and suppller base by supporting
Interoperablility

NASA Cooper afive Agrssment NCC $-18 Subconirant No. 101 Page 7

NASA Repository-Based Softy Engineering Program

NASA can make & major contribution...

Objectives

« Bulld loyal customer bass among high-Impact niche markets
- customers whose success affects U.S. competitiveness
and from whom technology success spreads quickly

« Introduce reuse into customers’ mainsiream software
development practices so that thelr software engineering
efforts parailel the clarity, consistency and predictability of
other engineering dlsc!plfnu

« Make reuss tools, asssts and practices easily and
economically accessible to universities

» Consistently monitor and Increass customer benefits

NASA Ay NCC 916 No. 104 Paged

73

NASA Repository-Based Software Enginesring Program

NASA can make a major contribution...
Benefits

« Increassd customer competitiveness

« Widespread dissemination of NASA-developed software
assets and technology

. Graduates who are better able to engineer large, complex
software systems

+ Safer, higher quality products for NASA

NASA L hgr NCC #- 16 S 4 No. 101

Page b

NASA Repoaitory-Based Software Engineering Program
Commitment to Customer-Driven Quality

Ensures that RBSE --
- Provides customers with what they expect and need

« Focusaes on efficlency, Le., providing products and
services at a minimum cost whlile ever more effectively
Increasing bottom-line benefits o target customers

» Measures its impact using well-defined criterla

NASA Cooper siive Agresment NCC-#- 18 Subnoniradt No. 101 Page 10

74

NASA Repository-Based Bofh Enginearing Program

RBSE will serve high-leverage, niche markets

+ NASA/clvillan asrospace application domains

+ Civillan mission- and software-intensive, safety-critical
systems

+ Educational institutions Interesied in reuse

NASA Coopersive Agrsement NCC #: 1§ Subcordiact No. 104 Page 11

NASA Repository-Based Software Engineering Program

Research will make reuse more accessible by...

« Applying human-factors engineering

« Exploring new classification schemes

» Developing a generalized life-cycle process model
« Helping to lead key cooperative reuse efforts

WABA Cooper i s Agy serment NCC #- 14 Subcaniract Ne. 101 Page 12

75

/

Software
Reuse

Software Reuse in
Systems Architecture Branch
Information Systems Division

NASA Langley

Langley Resesrch Center /Systems Architecture Branch

/

« Background

« Plans

OUTLINE

Kathryn Smith

» El/InQuisiX overview

Langley Research Center /Systems Architecture Branch

Kathryn Smith~ ©- 76

Eli/InQuisiX
/ Background \

Eli (now InQuisiX) Software Synthesis System - SBIR
Software Productivity Solutions, Inc., Melbourne, FL

Phase | SBIR (Completed Sept 1987)
. Defined reusable software synthesis methodology
« NASA CR 178398 Knowledge-Based Reusable Softwar
Synthesis System -

Phase |l SBIR (July 1988- Sept 1991)

Objectives:

« Integrate advanced technologles to automate the
development and use of reusable components

- Make software reuse easy to perform ..

Build 1, Prototype library system [Automated Reusable
Components System (ARCS) - US Army CECOM], Jan 1989

Build 1.5, Initial Eli library system, March 1989

\I\II\SI\ s sy e ~ /

Langioy Resoarch Contor /Systems Architecture Branch Kathryn Smith

Eli/InQuisiX
(Background 2 \

Eli (Bulld 3) April 1991

Automated set of cooperating reuse tools
window and menu based user interface
runs under X11 on a Sun 4

\‘..u-' ‘.. ﬂﬂro'ﬂna/‘

Library facilities to support classifying, storing and
retrieving reusable components

Design Synthesis Tool - Software Through Pictures
Component Checkout Tool
Flle Checkout Tool
Ada Component Metrics Tool
Phase lll (commercialization) Winter 1992

Possible candidate for STARS
Support from SAIC

\ P memmee)

Langley Research Center /Systems Architecture Branch Kathryn Smith

P. 77

[N

Top-Level Eli Architecture \

interaction Information

X-Windows

Managament m Management | E
§
- 3

§ SPS , .
InQuisiX ,
Software Synthesis System \
m Searchers
(4
o -M“m
s K
Valdason &
GCertification
Reuse Metrics

Auomated Manual
Amcm Atctnqnbucl Enyy Reuse Library System
. Reuse Library
Domain Analys Classification Creation Usage Mewics

& Management

User's Softwore
Enginesring
Environment

Langiey Ressarch Canter /Systems Architecture Branch Kathryn Smith

. 78

Lt

i

Eli/llnQuisiX
/ Software Synthesis System

Flexible:

« User tailorable and user extensible
Supports many types of attributes

» Faceted classifications

* Text

* File

» Keywords

« User defined component classes and classifications

Langley Ressarch Center /Systems Architecture Branch

InQuisiX
Library Classes

Kathryn Smith

COHPONENT
Name
Author
Date submitted

agllwace Qesion Qocumsnt
Language Type Tyoe
Function Relstes S/W Stendard
Abstract Related S/W
Key words
Dev. compiier
Relsted docs.
tiatblid
Family Function test_suite
package._type test_type

\..

4,)

N o

Lmunymc‘mu /Syammnoem&mch

Kathryn Smith

. 79

Eli/InQuisiX
f Plans \

Serve as a beta test site for Eli/InquisiX

Technology Transfer

Develop interaction between InQuisiX and CSDL CASE

N’@‘ Natioral Asrcnauscs and Space Adminisvaion /

Langiey Resesarch Center /Systems Archilecture Branch Kathryn Smith
Eli-CSDL CASE
Interaction \
Software
Developer)
) P 7 A Y N
4 ‘ N N
4 RN
ALS p—= Ei LaRC

~————— Flight

CASE |e——— System code

| |

Library

ST —— _/

Lsngiey Resesrch Center /Systems Architecture Branch Kathryn Smith

. 80

JPL

Hypermedia Library Technology
(HyLite)

Presentation to
NASA Software Reuse Workshop
May 5-6, 1992

Joseph H. Jupin
Edward W. Ng

Jet Propulsion Laboratory
Pasadena, California

HyLite

Agenda
Introduction B E.Ng
NASA's Need for Hylite E.Ng
Accomplishments E.Ng
ESC , J. Jupin
Summary J. Jupin

. 81

JPL

Introduction

e HyLite is a research & development activity to produce
a versatile system as part of NASA technology thrusts in
automation, information sciences & communications.

e Useful as a versatile system or tool to facilitate the
construction of electronic libraries for:

- software components

- hardware parts or design diagrams

- scientific or engineering datasets or databases
- bibliography organized by special taxonomy

- configuration management information

- etcC...

WIHIIMJ

L.
) -
DRNSON HISS I

A
Laagley (M4

. 82

<JPL

-)

Hylite for NAsA A"?ichms

e HyLite provides the potential to address a bgad range of
NASA problems in the 1990's, such as,

- scientific data deluge
- rapidly increasing complexity in software development
- ever growing volumes and variety of documentation

o HyLite evolved from a task formerly entitled the
Encylopedia of Software Components (ESC)

oESC was motivated primarily by the need for software reuse

oIt was designed in anticipation of the "K by N by L" problem,
that is, K kinds of computers, N applications, & L languages

o This presentation will focus on the software greuse relevance
of HyLite N
\,

Hylite Accomplishments
(FY92 and Projected for FY93)
o Prototype for beta testing on color Macintoshs
& Graphical user interface (GUI) developed for inserting new components

and property knowledge, for browsing and searching databases, and for
retrieving software from selected networks

e Contain library of math software and library of data structures and algorithms

o Presently being adapted as a graphical front-end for national software
exchange experiment

o To be adapted as an intelligent front-end to NAIF, a library of software
tools and datasets for space flight navigation system

¢ Investigate collaborative arrangements with Ames and Langley on
applications in aeronautics, materials, and structures areas

e Connect to Netlib, a very popular online software library

o Initiate SBIR contract for commercial spin-off
—————a — =

(i

JPL

I

M

Encyclopedia of Software Components (ESC)

Overview

- Pertinence to Software Reuse
- ESC Proof of Concept

- ESC Prototype

- Current Developoment Effort
- Future Enhancements

- System Walkthrough

- Technology Components

- Summary

N

Pertinence to Software Reuse

o Facilitate Electronic Search for Software
o Transparently Link Software Repositories

o Organize Software into Logical Units

. 84

JPL

ESC Proof of Concept

¢ Development Environment
- SuperCard on Macintosh
- Think C

o Features
- Browser
- Publisher
- History List

e Lessons Learned

- Stronger programmmg language needed

- Better representation for software classification
- Software classification needed

- Automatic GUI generation needed

k RWNAIU im

JPL

ESC Prototype

¢ Development Environment
- Macintosh Allegro Common Lisp
- Think C
- PixelPaint Professional
- Canvas 2.0

o Features

- Browser

- Searcher

- Publisher

- Retrieval Mechanism

- Classification Mechanism
-- Linnaeus
-- Semantic Networks

. 85

JPL

Current ESC Development Effort

e Port to Unix workstations running under the
X window system

o Inclusion of Al technologies
- Intelligent retrieval
- Learning from experience
- User modeling
- Incomplete retrieval statements
- Spelling and grammar correction.
- Automatic suggestion of alternative retrieval
requests when a trieval fails

e Updating the Prototype to include other capabilities

- History List
- Hypertext
)) TN A |
e—

ESC System Walkthrough

. 86

JPL

Technology Components

e Object Oriented Databases
e Classification Scheme based on Semantic Networks

¢ Automatic GUI generation

JPL

Summary

e HyLite represents an important area of NASA's computer
science base research and development

o It is promising in significant potential pay-offs to a broad
range of NASA problems

H' o Software resue is one important application

o With mutual leveraging among NASA Centers to industry
and universities, we can make significant progress in the
JF next 3-5 years

o JPL is strongly motivated to cooperate with other NASA
Centers

'7 COSMIC: Still Changing After All These Years

L. Scott Clark
Assistant Director
COSMIC
The University of Georgia
382 East Broad Street
Athens, GA 30602-4272

scott@cosmicl.cosmic.uga.edu
Voice: (706) 542-3265
Fax: (706) 542-4807

Software Reuse Tools Workshop (5/92) PAGE1

COSMIC: Still Changing After All These Years

COSMIC OVERVIEW

Historical Background

® 1958 Space Act

@ COSMIC Founded in 1966

@ Contracted out of Code CU at Headquarters
o NMI 2210

Software Reuse Tools Workshop (5/92) PAGE 2

COSMIC: Still Changing After All These Years

COSMIC OVERVIEW

COSMIC Now

® Functional Divisions
@ Available Computing Resources

@ Inventory Composition
@ Characterization of Customers

@ Promotional Efforts

Software Reuse Tools Workshop (5/92 PAGE 3

COSMIC: Still Changing After All These Years

COSMIC OVERVIEW

COSMIC
And The Software Innovator

@ Technology Utilization Offices
@ Software Submittal

® Program Checkout And Evaluation
® Tech Brief Awards

Software Reusc Tools Workshop (5/92) - PAGE 4

COSMIC: Changing After All These Years

SUBMITTAL/DISTRIBUTION ISSUES

Connectivity

Software Submittals

® Coordination Of Submittal With TUO
Transmittal Documents

@ Documentation

@ Authorization/Security

@ COSMIC + Author Communication
® Research or Pilot Codes

NASA

Software Reuse Tools Workshop (5/92) PAGE S

COSMIC: Still Changing After All These Years

SUBMITTAL/DISTRIBUTION ISSUES

Software Distribution

® NASA vs Outside Customers
® Documentation

® Ordering

@ Authorization/Security

® Intellectual Property Rights

Tooh Workshop (5/92) PAGE 6

. 90

CERTIFICATION OF REUSABLE SOFTWARE
COMPONENTS

Presentation to:

NASA Software Reuse Tools Workshop

5-6 May 92

Rome Laboratory
Griffiss AFB NY 13441

Deborah Cerino/C3CB/DSN 587-2054

Overview

« What is Certification?

« Certification Considerations
« Test Techniques
« Formal Verification
 Quality Analyses

+ Research Areas '

« Rome Laboratory Program Plan

¢-2

. 91

Considerations For Certification Of Reusable Components

Why Certify Components?

« insure high quality

« provide degrees of confidence

« aid in reuse decisions vs
development from scratch

« alleviate legal issues

« promote reuse; significant cost
savings (over 50%)

What will this Program provide?
« certification process—multi-level
« advanced techniques/tools for component
analyses (software test & verification,
software quality assessment)
- another dimension for choosing reusable
components (c.g., choose a highly
tested over a poorly tested component)

.92

STRAWMAN CERTIFICATION STRATEGY

s) }
VERIFICATION and/or
_____ PERFORMANCE EVALUATION
LEVEL 4 '
_____ MUTATION TESTING
3 QUALITY METRICS RATINGS
LEVEL 2 BRANCH TESTING (White Box)
LEVEL | $ FUNCTIONAL TESTING (Black Box) CONFIDENCE

$ = COST TO PRODUCE & CERTIFY

$ = COST OF PURCHIASING COMPONENT

CORRELATION BETWEEN BRANCH TESTING AND ERRORS FOUND

NO OF CHECK SOURCE: 1987 STUDY FROM JAPAN
CONDITIONS 230 - Retfer Consuitants, Iinc.

number of unchecked conditions (branches)
10

cummulative errors found

| TIME
12730 1S 1115 21 25 31 2/4 10 14 20 26

(I

LIFE CYCLE COST BENEFITS
USING AN AUTOMATED TEST

TOOL

HUGHES PROJECT EXPERIENCE

FORTRAN - 1979

]
g
%5 STANDARD TEST
g > / APPROALCM
w
Construct Integration Operstion
TirE
WHEN ERRORS ARE WHEN ERRORS ARE
DETECTED EARLY DETECTED LATER
CosT: COST:
400 #rTors x 2 peryon GBI . VS 1200 errors 00 srrors
orrer wzps 9t x2pg 9
srror e
800ed - 520004
A 4400 pd
AL TEST & VERIFICATION TOOLS

JOVIAL J73 - 1983

COBOL - 1983

94

Ada Test & Verification System (ATVS)

Analyses Capabilities
m smucTURE
= =
™aNG l
(oo L =
Inputs __
Outputs

STATIC ANALYSES

- LOOK AT CODE STRUCTURE
User's Ada

What are all the variable, parameters, etc. names ?
Where are they located in the code?

Which units call/are called by other units?

S0UrCe
What does the unit nesting look ike?
processing
How many LOC in each unit?
How many tasks?
!

0 How many procedures?
- m

STATIC ANALYSES

BENEFIT: Identify a Potential Problem

- SET/USE REPORT
- SOURCE CODE REPORT

« PROGRAMMING STANDARDS REPORT

Program Library: SIMULATOR,WORK

--

* CAR:B0DY 05-SEP-1989 11:30:21°

.I.Q.ll......0..‘...0...'Q..................00...'...Q......'...O......I.............Q

-u----.-.---.n-a-.-.--.----.-.----.--o---.-----..-.----.aaa--.-..---.--.------- -------------------

--

CAR_DATA VARIABLE CAR:BODY 4D 148 18

2000008002

* CREATE_CAR_UST800Y ' 08-SEP-1989 07:35:11*

.......0.0.‘.0...0....‘......‘...I..C.Cll.l.l..lIIQQ........0.‘..0...0.....00.........

--

CAR_INFORMATION IN_PARM CREATE_CAR_LIST:BODY 500
0000008000000 SETIUSE AMMY. m is never u“‘. 000t EINE1E000

. 96

-—— -_.--------—-----—-___--_-—__-----——---------—_-_---_
- - = -

.'.I..l.l..."'....‘....ll.Ili.l..'...C..l.....‘...........'....'..I..""....Q't

. COMPILATION UNIT LEVEL METRICS *
+ CREATE_CAR_LIST:BODY 08-SEP-1989 07:35:11 "
.i..OiI.a..‘..ll.lli..t..'.l..-"..i...‘.i..i'.l.liii'..'.l.............t00......
Structure Units Declared

- Package

- - Podies =~ - = = - = - - - - = - = = = = = *° 1

- Procedure

- - Bodies - - = - - -~ = = - - = - = = = = =< 3

- Generic Instantiatiens - - - - - = = = = = 7 - - = 4

- Maximum Program Unit Nesting Depth - - - - - - - = = = 1

with Context Clause - - - = ~ e e e = m = = = e o= 1

Use Context Clause - - - =~ = - = = = ~ - = e = = = 1

Source Lines - - -~ - - - - - = - = = .-~ .- - = = 95

- plank- - - - - = - - =~ - = - = = =~ - = = - 20

- CodeOnly - - ~ - =~ - =~ - - - - = = =~ - - = 70

_ Comment Oply - - =- - = = = = = = = =.= = = = =~ "

- Code Followed Comments - - - - = - = = = = = ~ - - 1

Lines of Code - - - - - - -~ = = - = -~ e o e m e = 71

- 0 Semicolons - - - - - - - - = = = = = = - = - 16

- 1 Semicolon- = = - e = = - - = s == - = - = 59

17 OCT 1989 14:18 ATVS PROGRAMMING STANDARDS REPORT
Prwmm&:smwonmonx PAGE 1
Comgilation Unit: CAR:BODY

Standards Version: 28-SEP-1989 07:486:48

1 with TEXT_IO, CREATE_CAR_LIST;
2 use TEXT_IO, CREATE_CAR_LIST;
(S F16 violated: USE clause - forbidden construct present.)

St oy vowed: Por

{ : of source lines with -

; AR, DATA: CAR, INVENTORY , comments - minimum of 60 not achieved. Percentage = 0)
8 begin

8 PUT (" car inventory 4

8 NEW _LINE; sxampie’)

10 PUT (" Enter information for 4 cars *);

11 NEW_LINE;

12 forlin1.4loop

(Swd F07 violated: Unnamed - forbidden construct present.
13 NEW_LINE; Loop)

STATIC ANALYSES

BENEFIT: Aid Maintenance of Software

|-
[o
[24
3

+ ENTITY CROSS REFERENCE REPORT
+ UNIT STRUCTURE REPORT
ENTITY CROSS REFERENCE REPORT
SYMBOL EITY XD COMPILATION WLiT AEFERENCES

CREATS_CAR_LIS? PACKAGE_BODY
g :cn 10 x.u:w nowitl BODY Il'!r: m:g:gg% s:
can_rres_To GRERIC_INGTANTIATION CRRATS_CAR_LISY:BODY ®
sy saocEoolin_BODY_BNETTY CEEATE_CAR_LISY:BODY 170
ABAD VARIABLE CRREATS_CAR_L1§T1800Y S0
magmr SmbmUSnE omaohemie e
mmlil" TYPE_IO amnic_1ieTantin CREATE_CAR_L187:800Y x:

17 OCT 1989 14:59 ATVS UNIT STRUCTURE REPORT PAGE 1
Program Library: SIMULATOR; WORK

Structure Unit Unit Kind Starting Source Line

—---_-_-_-_---------—----_--—---—-----------—-__-__---_aa—__--—---------_-----------

......."....I'............'.'...‘.........-'I.l.-.'........i.......'..'..'.'..l.....

e« CREATE_CAR_LIST:BODY 08-SEP-1989 07:35:11 .

l......l......l'..II".................ll‘....."..."'l.l...".l....Q."l.lt..'.....

CREATE_CAR_LIST Package Body 3
.CAR_ TYPE 10 Generic Instantiation 8
.CAR_| COLOR TYPE_IO Generic Instantiation 9
STYLE TYPE 10 Generic Instantiation 10

..PRICE TYPE 10 Generic Instantiation 11

..GET Procedure Body 17

. -ADD_CAR_TO_LIST Procedure Body 50

. .PUT_LIST Procedure Body 64

DYNAMIC ANALYSES

ATVS
Database LOOK AT RUN TIME BEHAVIOR

« Which sections of code have
been executed?

« How many times has each branch
been executed?

« How much time was spent in a)
particular section of code?

""E‘ﬂ_oiﬂ) « What sequence of tasks was executed?

i

%ggv 53*

DYNAMIC ANALYSES

BENEFIT: Provide Test Coverage

« EXECUTION COVERAGE
UNIT COVERAGE REPORT
-BRANCH COVERAGE REPORT
- TIMING REPORT

« TASKING REPORT

UNIT COVERAGE REPORT
I NUMBER OF EXECUTIONS |
Comp. Unit Line | | { Normalized Lo Maximum)]
Structure Unit ! Kind | Count | 20 40 60 80 100
| .- .- . -. -,
MOD_FUNCTIONS : BODY | I
MOD_FUNCTIONS 2 PKG BDY 0 | i
CALC LEAP YEAR 4 FUNC BDY 3 | AN NARNSEN NN AR NRA RN RARRNRN|
GET DATE - 16 FUNC BDY 2 | sessenncenantenrenne |
| |
R DATE_MANIP :BODY I i
DATE_MANIP 6 PKG BDY 0 | \
NEXT_DATE 8 FUNC BDY 3 | SONNGNARBIRROEIENORIRRINRRRNCAR|
| I
DATE_LAB: BODY 1 |
DATE_LAB 4 _ PROC BDY 1 | tocesnnans |
block_24 24 BLK STMT 3 | serncaccsnnassnnsannencassiang]
block:u 43 BLK STMT 3 | #esosaccansacesianasnrsacitann

100

BRANCH COVERAGE REPORT

Structure { Invo= Total Branches Percent | Branches
Unit/ jcations Branches Executed Branches | Not
Line | Executed | Executed

COMPILATION UNIT:

MOD_FUNCTIONS : BODY

MOD_FUNCTIONS / 2 0 0 0 08 |
CALC_LEAP YEAR / 4 3 ‘ 2 sos | 2 3
GET_DATE / 16 2 1 1 1008 |
COMPILATION UNIT: DATE_MANIP:BODY
DATE_MANIP /6 0 0 0 0 8 |
NEXT_DATE /8 3 18 5 268 | S 6 17 8 9 10
11 12 13 14 15 16
BRANCH COVERAGE REPORT
lO...l.Q..0.QOVDO0..0.l000....0.0...00.0.000.......0..0..0...0.0..0.....00...0..0
* MOD, 1900 ¥ 17 88332
.O.Qll.0.‘Q........0..........CO.Q....O.....0..0.............'.......0000.......
1
2 n-iqnhubllll}“ﬂﬁﬂﬂﬂlh
3
4 mwm_mrm:nu;mwu
5 .
¢ begn
* Branch 1 PROGRAM UNIT START
7 ¥ (Veot_Date.Year mod 400 = 0) then
* Branch 2 IF CONDITION TRUE
] rolumn True;)
] H(T“Vundﬂ)-uﬂmvnmuwu)

101

ATVS STATUS
. Government Version Completed (Sep 89)

. Commercial Version Currently Available - AdaQuest
- Fully supported
- Robust
- POSIX/Motif Compatibility - Jul 92

- Additional §tandards from

ide - Jul 92
‘ MUTATION TESTING ' I
PROGRAMA PROGRAM B
BEGIN BEGIN
READ K READ K
FK<10 FKea10
THEN THEN
J:uK+5 J:=l+S
ELSE ELSE
J:=K+10 J:mKs10
ENDIF ENODIF
WRITE J WRITE J
END END
ORIGINAL PROGRAM MUTANT PROGRAM

MUTANT - A VARIATION OF THE ORIGINAL PROGRAM
THAT CONTAINS A SINGLE INSERTION OR DEVIATION

P. 102

MUTATION TESTING

EXISTING MUTATION TESTING SYSTEM CAPABILITIES

- ANALYZES FORTRAN CODE

- AUTOMATES MUTATION TESTING PROCESS
(GENERATES AND EXECUTES MUTANTS)

- MAINTAINS DATABASE OF TESTING STATUS

- LOCALIZES PROGRAM ERRORS

USER RESPONSIBILITIES

- GENERATE TEST CASES

- VERIFY TESTCASE RESULTS

- ESTABUSH TEST COMPLETION CRITERIA
- IDENTIFY PROGRAM ERRORS

MUTATION TESTING

MUTANT OPERATORS - A SIMPLE TRANSFORMATION

« STATEMENT ANALYSIS

- REPLACE EACH STATEMENT BY "CONTINUE"
- REPLACE EACH STATEMENT BY "RETURN’
- REPLACE THE TARGET LABEL IN EACH "DO” STATEMENT

+ PREDICATE AND DOMAIN ANALYSIS
- TAKE THE ABSOLUTE VALUE OF AN EXPRESSION
- REPLACE ONE ARITHMETIC OPERATOR BY ANOTHER

- REPLACE ONE RELATIONAL OPERATOR BY ANOTHER
- REPLACE ONE LOGICAL OPERATOR BY ANOTHER

+ COINCIDENTAL CORRECTNESS
- REPLACE A SCALAR VARIABLE

- REPLACE AN ARRAY REFERENCE
- REPLACE A CONSTANT

p. 103

‘ MUTATION TESTING I

MUTANT STATUS

NUMBER OF MUTANTS GENERATED: 307

PERCENT EXECUTED: 100%
PERCENT KILLED

AlLL MUTANTS

CTL
SAL

98.90%

&
R
#

£3¢33 3832

99.00%

RL SOFTWARE QUALITY
FRAMEWORK APPLICATION

RADC Software ——
ﬂ&.« ;GP-' ™ DO =T
Spec ‘ LIFE-CYCLE PHASES
) v | Y |
oo w e K B s
Ragualts

QUALITY REPRESENTATION

& [pERFORMANCE ADAPTATION DESIGN
ACQUISITION % W BTANABLITY
CONCERNS ™% EXPAGABL Y MANTANABL
INTEROPERADILITY
3| [_FACTORS - SOFTWARE QUALITY FRAMEWORK |
Y
REUSABILITY USER ORIENTED VIEW OF PRODUCT QUALITY

SOFTWARE ORIENTED

l ATTRIBUTES PROVIDE
REQUIRED QUALITY

FUNCTION " SINGLE ENTRY
SINGLE EXIT QUANTITATIVE MEASURES
LOOPS -].| AND MEASURES OF
-1 ATTRIBUTES
L T

Ref: Specification Of Software Quality Attribates (RADC-TR-85-37) Vols I-111

‘ QUality Evaluation System (QUES) '

o Goals

o Achievemenis

o Quality Growth
Ada PDL Code
Ada/FORTRAN Source
Data Collection Forms 5 —_— F-%
S/W Problem Reports m :
SLCSE Database Information s Er]

B o /W Quality Indicators

VAXStaton (AFSCP 800-14)
SUN Workstation © S/W Management Indicators
(AFSCP 8800-43)

o Automates The RADC S/W Quality Framework Evaluation Guidebook
(RADC-TR-85-37, Volume III)

o Supports Acquisition Managers, Project Managers, & Engineers

o Allows Quality Goals To Be Specified

o Assesses Software Product Quality

P. 105
qeality S41191

PROJECT:

/
R WW

RECTNESS
— Q22222221 . ACTUAL

\\\\\\\\\\\

FRAMEWORK EXPERIENCE AND
RESULTS (JAPAN)

~ AVERAGE 3% OF DEVELOPMENT COST PER FACTOR
25% SAVINGS THRU FULL-SCALE DEVELOPMENT

51% SAVINGS AFTER 1 YEAR MAINTENANCE

M:m y
ummmmmpmwmmdmu

FORMAL VERIFICATION

Specifications
input Conditions
Output conditions

B — Pfogram

DEFINITION: Collection of techniques that apply the formality
and rigor of mathematics to the task of proving the
consistency between an algorithmic solution and a
us, complete specification of the intent

(behavior) of the solution

Develop new techniques for insertion into Certification Methodology

* Software Fault Toler@ance
* V & V of Artificlal Intaligence components
* Performance assessment for real-ime appiications

. 107

PROGRAM PLAN

« Develop Initial Certification Framework
« Funded by CIM central funds
« Contractor - RTI
« Schedule: May 92 - Dec 92
« Deliverables - Technical Report
- available tools/techniques
- approaches for information storage
- certification framework
- plan for application of the certification process
- plan for costbenefit analysis
- plan for incentives

. App'ly and Validate Certification Framework
« Funded by RL 6.2 funds
» Schedule Jul 93 - Jul 96
« Deliverables -Technical Reports
- Revised Certification Framework

- Results of application of certification process
- Results of costbenefit analysis

SUMMARY

CERTIFICATION PROCESS & TOOLS

- PROVIDES MEASURE OF CONFIDENCE IN REUSABLE COMPONENT

- PROVIDES SCALE & PERFORMANCE DATA IF REQUIRED

- SOUND BASIS FOR BUILD/BUY DECISIONS

. 108

Asset Source for Software
Engineering Technology

(ASSET)

Charles W Lillie, PhD

SAIC

03-749-84712
lilliecc®mcl.span@sds.sdsc edu

S

e

Keronem Apyw
Intarnatonel Corporeton
A2 Frgsis e | Sernw? ¢ WY

GOALS

ESTABLISH A DISTRIBUTED SUPPORT SYSTEM FOR SOFTWARE
REUSE

SHORT TERM

- IMPLEMENT A SOFTWARE REUSE LIBRARY

. BECOME FOCAL POINT FOR SOFTWARE REUSE WITHIN THE DEFENSE
INDUSTRY

LONG TERM

. HELP STIMULATE A US SOFTWARE REUSE INDUSTRY

. 109

ACTIVITIES

ASSET ACQUISITION, CATEGORIZATION, AND DISTRIBUTION

ASSET CONFIGURATION MANAGEMENT (INCLUDING PEDIGREE
MAINTENANCE)

ASSET RECALL
SETTING UP LOCAL REUSE PROGRAMS AND REPOSITORIES
"YFILLOW PAGES" FOR REUSE GOODS AND SERVICES

TECHNOLOGY INTERESTS

DISTRIBUTED NETWORKING OF REPOSITORIES
INTERCHANGE OF ASSETS AMONG REPOSITORIES

+ NO LOSS OF INFORMATION
+ DESPITE DIFFERING ORGANIZATION OF REPOSITORIES
CONFIDENCE INDICATORS

« DPETAILED PEDIGREES OF ASSETS
+ CERTIFICATION TECHNIQUES

“SEAMLESS" INTEGRATION WITH LOCAL ENVIRONMENTS

AND REPOSITORIES

)

nmw

An Fry orved Comy

P. 110

Asset Evaluation

Documented: Offeror attests that information requirements
are met.
Librarian attests that information requirements
Audited: are met and library issues are addressed.
Librarian has examined the software
Validated: engineering asset and found no errors or
inconsistences.
Certified: Librarian performed independent repeatable
cvaluation relative 1o published protocol.
ool Cocparamon
A £ 2)OAIree (e Campoany
Phased Inspections
Single Inspection Phase
r---—--------ﬂ
1 |
Rigorous Rigorous ! !
Specific Specific 1 I
Quality Quality I |
Goal Goal 1 y 1
1

::-:..+
1 Inspection
Phased Phased

Single

e-- ‘. |

Inspection Support Toolset

Managing

Inspecting

Monitoring

¥
y
}
)

An Employee-Onwned Company P. 111

NTSC Reuse Initiative

« Naval Training System Center

« Adaptation of STARS Technology

« Reuse Library Development

« Flight Simulation Domain Analysis

« Assist in Asset Moderization

« Develop Reuse Software Assessment Tool

——

A &mpraywe-LUinerod Compary

ASSET Business Plan

Market Analysis
Assess current understanding of software reuse technologies,
benefits, and requirements within the organizations surveyed, and

their commitment to integrating software reuse into their software
development process.

Busi Analysi
Analyze business models to determine the best approach to manage a
software reuse library.

Business Plan

Use business and market analyscs to describe the transition from
government funding to self-sustaining operations.

VA

Ay / Py (oo L

Vany P. 112

ASSET LONG RANGE PLANNING

INFRASTRUCTURE
SHORT TERM MEDIUM TERM LONG TERM
1992 1993 - 1994 > 1995

Implement prelim

yellow pages

Implement RIG
yellow pages

Install advance

library mech.
Experimental Interconnect Interoperability

interconnection multi-library

(CARDS, AdaNET)
Local Security Network Security Interoperability

security

Survey Existing Formulate

legal Work basis for industry
Survcy cicctronic Formplalc ==

commerce basis Sciance AD Apurmied

international Carporation
41 Emproyee-Onwned Compary

ASSET LONG RANGE PLANNING

PRODUCTS & SERVICES
SHORT TERM MEDIUM TERM LONG TERM
1992 1993 - 1994 > 1995
STARS CDRLs Program Specific
STARS BB Products & Services
STARS NG Consulting Services
STARS Products
Other
Set up local libraries
Cross domain components
Standards & bindings
Reuse technology tools
Reuse Library
Services
R

An Employwe-Onwred Company

ASSET LONG RANGE PLANNING

MARKET DEVELOPMENT
SHORT TERM MEDIUM TERM LONG TERM
1992 1993 - 1994 > 1995
Quantified market Transition to fee Self-sufficient
analysis & business for service operation
plan operation
Marketing force Customer base
separate balance
sheet, P&L
Identify & have pilot Some industrial Supplier base
supply agreements supply agreements

(commerical & gov't)
Some gov't supply

agreements
htenational Corparation ™l
An Employee-Owned Company
RELATED EFFORTS

RIG - REUSE LIBRARY INTEROPERABILITY GROUP

CARDS - CENTRAL ARCHIVE FOR REUSABLE DEFENSE
SOFTWARE

AdaNET
STARS

. 114

TWELVE-MONTH MILESTONES/SCHEDULE TASK 1845

1801 1992

MAMJIJABONDIJT MAMJIJASONDIJF NANJIIAS

aslilly Men

-
s
Yare and Train Bied |

Ome You Plan ol | |

Five Your Plon Cme |

Establioh Feclity

Select iniial Liwemry l

Popuiate Uibrery F——

Wniial On-Uine Cuialeg = |

ASSET Opersiionsl - IOC

Develep Operaiing Procadwed I

Conmecl 15 Wide Area Netwerk

Mesnzament Pian

industriel Funding Mode!

Publish Herd Cepy Calsing . T %

Aovss 32 Workshep

ASSEY Oually CriteriarProced.)

Adv Liary Machoriom . Bels =0 2

- Opesesional | |

[T r— =

AFS Conneciivlly
11

Science
M narvratr

| —
Covparatron
Onned "

Ay I

cience Applications International Corporation

Re-Engineering With Reuse

DEFINITION
A process of software analysis and development that takes as input:
® Software artifacts from a

@ Reuse Library
® New Requirements (optional)

For the purpose of producing as gutput:
® Target System of higher quality,

® Updated Domain Knowledge,
® New Reusable Assets.

(With Reuse)

Legacy System

Exisiting Assets

TSN SIS TN M

Legacy system
® Domain Knowledge (Vocahulary, Tuxon'omics. Models, Standards)

. 115

PROCESS

pucmmicience Applicaiions Internationst Cerporation

SAIC's Domain-sensitive, reuse-oriented 8|
from existing (Legacy) aystems with by-products

e —

Re-Engineering

(Continued)

proach to Illg-engimring efliciently produces modernized (target) systems
consisting of reusable assets and persistent domain knowiedge.

[T

116

RS
Phased Inspections
Single Inspection Phase
r-==-=-==-====-- "
| |
Rigorous Rigorous ! 1
Specific Specific i \ 1
Quality Quality 1 i
Goal Goal 1 l
Single Single }— !
—o={ Inspectl Inspection - —r
Phased Phased 1
i 1
! i
| |
| |
! |
Inspection Support Toolset
Managing Inspecting Monisoring
L]
; " cad
hmm Clpﬂflﬂ'dﬂ S '
An Emproywe-Omned Company
NTSC Reuse Initiative
« Naval Training System Center
« Adaptation of STARS Technology
« Reuse Library Development
« Flight Simulation Domain Analysis
« Assist in Asset Moderization

Develop Reuse Software Assessment Tool

.=

Scservew Apphess

Anlndmlm;o.w P. 117

science Applications international Corpuration

Re-Engineering With Reuse
DEFINITION

A process of software analysis and development that takes as jnput:

® Software artifacts from a [.egacy system,

® Domain Knowledge (Vocabulary, Taxonomies, Models, Standards)
® Reuse Library)

“ ® New Requirements (optional)

For the purpose of producing as gutput:
® Target System of higher quality,

® Updated Domain Knowledge,
@® New Reusable Assets.

Target System

VIR Si16-3) S0l0 0B #1

pemm—cience Applications Internstionsl Corporation =22

Re-Engineering

PROCESS (Continned)

SAIC's Domain-sensitive, reuse-oricaied spproach (o Re-engineering efficiently uces modernized (target
rmnm(um)mmmwwwmam&m-r:m domain w:yslm

. 118

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Pubiic reparting burden for this coliection of informauon s Ssumated to dverage | hayf per response, including the time for reviewIng instructions, searching existing data sources,
\jathering and MaNTAINING the data needed. and cOMpieling and reviewing the coftection of intormation Send comments ragarding this burden estimate or any other aspect of this
Coflection of intormaton, including suggestions 1or reducing this Burden tn Washington Headquarters Services, Directorate for Informatian Operations and Reports, 1215 JeHerson
Davis Highway, Suite 1204, Arlingtan, VA 221014302, and ta the Office 3f Management and Budget, Paperwork Reduction Project (0704-0188), Washington, OC 20503,

T AGENCY USE ONLY (Leave blank) |2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
January 1993 Conference Publication

: D SUBTITLE i) S. FUNDING NUMB
‘K“ﬁ3§ﬁ-wi eI pproach Toward Cost-Effective, High-Quality, ERS

Software Through Reuse WU 505-64-10-02

6. AUTHOR(S)
Charlotte O. Scheper and Kathryn A. Smith, Editors

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8.7 PERFORMING ORGANIZATION
REPORT NUMBER
NASA Langley Research Center Research Triangle Institute
Hampton, VA 23681-0001 Research Triangle Park,

North Carolina 27709

9, SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

National Meronautics and Space Administration
Washington, DC 20546-0001 NASA CP-10115

11. SUPPLEMENTARY NOTES

Charlotte 0. Scheper: Research Triangle Institute, Research Triangle Park, NC
Kathryn A. Smith: Langley Research Center, Hampton, VA

FE— N
123, DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Unclassified - Unlimited

Subject Category 61

13, ABSTRACT (Maximum 200 words)

NASA Langley Research Center sponsored the second Workshop on NASA Research in
Software Reuse on May 5-6, 1992 at the Research Triangle Park, North Carolina.

The workshop was hosted by the Resarch Triangle Insitute. Participants came from
the three NASA centers, four NASA contractor companies, two research institutes
and the Air Force's Rome Laboratory. The purpose of the workshop was to exchange
information on software reuse tool development, particularly with respect to tool
needs, requirements, and effectiveness. The participants presented the software
reuse activitiesand tools being developed and used by their individual centers and
programs. These programs address a wide range of reuse issues. The group also
developed a mission and goals for software reuse within NASA. This publication
summarizes the presentations and the issues discussed during the workshop.

T4, SUBJECT TERMS . 15. NUMBER OF PAGES
software reuse, software development, software upositories, __ 124

: . 16. PRICE CODE
software libraries

AO6
e —
7T SECURITY CLASSIFICATION |18, SECURITY CLASSIFICATION [19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT
unclassified unclassified unclassified
NSN 7540-01-280-5500 Standard Form 298 {Rev 2-89)

Prescribed by ANSE Std 239-'8
298-102

